Closed StellaCarneiro closed 4 years ago
Hi Stella
Please take a look at the “inSitu” package (https://github.com/e-sensing/inSitu https://github.com/e-sensing/inSitu). There are more samples there.
Best Gilberto
On 29 Jul 2020, at 14:21, Stella Mendes Carneiro notifications@github.com wrote:
Where can I find more samples to train my model for the Legal Amazon? I see the Mato Grosso sample, isn't it too small? Thanks
— You are receiving this because you are subscribed to this thread. Reply to this email directly, view it on GitHub https://github.com/e-sensing/sits/issues/169, or unsubscribe https://github.com/notifications/unsubscribe-auth/ABOHEDNJI5XBS6AUW27H5A3R6AH6JANCNFSM4PLRIKXA.
Hi Gilberto,
Thanks for the quick reply. This package has been amazingly useful to me.
Unfortunately, the dataset amazonia_33K_12classes_4bands is not working. It shows me the following error:
<error/vctrs_error_scalar_type>x
must be a vector, not a tbl_df/tbl/data.frame/sits_tibble
object.
Backtrace:
Run rlang::last_trace()
to see the full context.
I've attached my code and system info in case you want to see it. All the other datasets I have managed to use are fine.
Should I report the error at “inSitu” package then?
Thank you,
Stella
From: Gilberto Camara notifications@github.com Sent: 29 July 2020 13:54 To: e-sensing/sits sits@noreply.github.com Cc: MENDES CARNEIRO, STELLA (PGT) Stella.Mendes-Carneiro@warwick.ac.uk; Author author@noreply.github.com Subject: Re: [e-sensing/sits] sits_train Samples (#169)
Hi Stella
Please take a look at the “inSitu” package (https://github.com/e-sensing/inSitu https://github.com/e-sensing/inSitu). There are more samples there.
Best Gilberto
On 29 Jul 2020, at 14:21, Stella Mendes Carneiro notifications@github.com wrote:
Where can I find more samples to train my model for the Legal Amazon? I see the Mato Grosso sample, isn't it too small? Thanks
— You are receiving this because you are subscribed to this thread. Reply to this email directly, view it on GitHub https://github.com/e-sensing/sits/issues/169, or unsubscribe https://github.com/notifications/unsubscribe-auth/ABOHEDNJI5XBS6AUW27H5A3R6AH6JANCNFSM4PLRIKXA.
— You are receiving this because you authored the thread. Reply to this email directly, view it on GitHubhttps://github.com/e-sensing/sits/issues/169#issuecomment-665678440, or unsubscribehttps://github.com/notifications/unsubscribe-auth/AG5JRC2VKUG7K2O3IN3VBJ3R6ASYJANCNFSM4PLRIKXA.
<error/vctrs_error_scalar_type>
x
must be a vector, not a tbl_df/tbl/data.frame/sits_tibble
object.
Backtrace:
rlang::last_trace()
to see the full context.
label count prop
Matrix products: default BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
Random number generation: RNG: L'Ecuyer-CMRG Normal: Inversion Sample: Rejection
locale: [1] pt_BR.UTF-8/pt_BR.UTF-8/pt_BR.UTF-8/C/pt_BR.UTF-8/pt_BR.UTF-8
attached base packages:
[1] stats4 grid stats graphics grDevices utils datasets methods
[9] base
other attached packages:
[1] inSitu_1.1.1 sits_0.9.5.1 wtss_2.2.0 keras_2.3.0.0.9000
[5] dplyr_1.0.0 sf_0.9-5 tmap_3.1 vctrs_0.3.2
[9] tidyselect_1.1.0 xgboost_1.1.1.1 signal_0.7-6 RSQLite_2.2.0
[13] RCurl_1.98-1.2 ranger_0.12.1 ptw_1.9-15 proto_1.0.0
[17] nnet_7.3-14 mgcv_1.8-31 nlme_3.1-148 MASS_7.3-51.6
[21] lwgeom_0.2-5 kohonen_3.0.10 imputeTS_3.0 imager_0.42.3
[25] magrittr_1.5 flexclust_1.4-0 modeltools_0.2-23 lattice_0.20-41
[29] e1071_1.7-3 dtwSat_0.2.6 ggplot2_3.3.2 snow_0.4-3
[33] raster_3.3-13 sp_1.4-2 zoo_1.8-8 dtwclust_5.5.6
[37] dtw_1.21-3 proxy_0.4-24 dendextend_1.13.4 DBI_1.1.0
[41] testthat_2.3.2 knitr_1.29 Rcpp_1.0.5 rmarkdown_2.3
[45] devtools_2.3.1 usethis_1.6.1
loaded via a namespace (and not attached):
[1] utf8_1.1.4 reticulate_1.16-9000 htmlwidgets_1.5.1 pROC_1.16.2
[5] munsell_0.5.0 codetools_0.2-16 units_0.6-7 withr_2.2.0
[9] colorspace_1.4-1 config_0.3 tensorflow_2.2.0 TTR_0.23-6
[13] gbRd_0.4-11 Rdpack_1.0.0 bit64_0.9-7.1 rprojroot_1.3-2
[17] generics_0.0.2 ipred_0.9-9 xfun_0.16 R6_2.4.1
[21] clue_0.3-57 bitops_1.0-6 assertthat_0.2.1 promises_1.1.1
[25] scales_1.1.1 forecast_8.12 gtable_0.3.0 log4r_0.3.2
[29] bmp_0.3 processx_3.4.3 timeDate_3043.102 rlang_0.4.7
[33] zeallot_0.1.0 splines_4.0.2 rgdal_1.5-12 ModelMetrics_1.2.2.2
[37] dichromat_2.0-0 yaml_2.2.1 reshape2_1.4.4 abind_1.4-5
[41] crosstalk_1.1.0.1 backports_1.1.8 httpuv_1.5.4 quantmod_0.4.17
[45] caret_6.0-86 tools_4.0.2 lava_1.6.7 stinepack_1.4
[49] ellipsis_0.3.1 RColorBrewer_1.1-2 sessioninfo_1.1.1 plyr_1.8.6
[53] base64enc_0.1-3 classInt_0.4-3 purrr_0.3.4 ps_1.3.3
[57] prettyunits_1.1.1 rpart_4.1-15 viridis_0.5.1 fracdiff_1.5-1
[61] tmaptools_3.1 ggrepel_0.8.2 cluster_2.1.0 fs_1.4.2
[65] leafem_0.1.3 data.table_1.13.0 RSpectra_0.16-0 readbitmap_0.1.5
[69] lmtest_0.9-37 whisker_0.4 pkgload_1.1.0 shinyjs_1.1
[73] mime_0.9 evaluate_0.14 xtable_1.8-4 XML_3.99-0.5
[77] leaflet_2.0.3 jpeg_0.1-8.1 tfruns_1.4 gridExtra_2.3
[81] compiler_4.0.2 tibble_3.0.3 KernSmooth_2.23-17 crayon_1.3.4
[85] htmltools_0.5.0 later_1.1.0.1 tiff_0.1-5 RcppParallel_5.0.2
[89] lubridate_1.7.9 Matrix_1.2-18 cli_2.0.2 quadprog_1.5-8
[93] parallel_4.0.2 gower_0.2.2 igraph_1.2.5 pkgconfig_2.0.3
[97] bigmemory.sri_0.1.3 geosphere_1.5-10 recipes_0.1.13 foreach_1.5.0
[101] prodlim_2019.11.13 bibtex_0.4.2.2 stringr_1.4.0 callr_3.4.3
[105] digest_0.6.25 leafsync_0.1.0 curl_4.3 shiny_1.5.0
[109] urca_1.3-0 nloptr_1.2.2.2 jsonlite_1.7.0 lifecycle_0.2.0
[113] tseries_0.10-47 bigmemory_4.5.36 desc_1.2.0 viridisLite_0.3.0
[117] fansi_0.4.1 pillar_1.4.6 fastmap_1.0.1 pkgbuild_1.1.0
[121] survival_3.2-3 glue_1.4.1 xts_0.12-0 remotes_2.2.0
[125] png_0.1-7 iterators_1.0.12 bit_1.1-15.2 class_7.3-17
[129] stringi_1.4.6 blob_1.2.1 stars_0.4-3 memoise_1.1.0
Hi Stella, the problems in the inSitu data have been solved. Please download the inSitu package again.
Hi Gilberto,
I get the error of not found for all datasets of insitu now. This does not happen with the data from sits, like samples_mt_4bands, that runs normally.
I've download and reinstalled all packages both in Mac OS and Windows and the error occurs in both. I saw that yesterday, some changes were made in sits package so I'm guessing this has sth to do with it, because when I made a quick test after your reply it was working smoothly.
Erro: objeto 'amazonia_33K_12classes_4bands' não encontrado
Thanks and sorry for the hassle,
Stella
On 31 Jul 2020, at 14:39, Gilberto Camara notifications@github.com wrote:
Hi Stella, the problems in the inSitu data have been solved. Please download the inSitu package again.
— You are receiving this because you authored the thread. Reply to this email directly, view it on GitHubhttps://github.com/e-sensing/sits/issues/169#issuecomment-667247169, or unsubscribehttps://github.com/notifications/unsubscribe-auth/AG5JRC3FZEIUZCLEMUCGOLLR6L6VHANCNFSM4PLRIKXA.
Hi Stella,
From your post, it seems like the package dplyr isn't loaded. Try library(dplyr)
or library(tidyverse)
before loading the samples. Like this:
library(tidyverse)
library(devtools)
devtools::install_github("e-sensing/inSitu")
library(inSitu)
data("amazonia_33K_12classes_4bands")
amazonia_33K_12classes_4bands.rda
I just tested this code on R version 4.0.2 (2020-06-22) on Ubuntu 16.04.
Cheers!
Hi Stella
Could you please install the inSitu package again? There were errors in the data set that have now been corrected. Please let me know if it works.
Best Gilberto
On 29 Jul 2020, at 23:01, Stella Mendes Carneiro notifications@github.com wrote:
Hi Gilberto,
Thanks for the quick reply. This package has been amazingly useful to me.
Unfortunately, the dataset amazonia_33K_12classes_4bands is not working. It shows me the following error:
<error/vctrs_error_scalar_type>
x
must be a vector, not atbl_df/tbl/data.frame/sits_tibble
object.Backtrace:
- sits::sits_select_bands(...)
- sits:::.sits_tibble_rename(data)
- dplyr::rename(., cube = coverage)
- tidyselect::eval_rename(expr(c(...)), .data)
- tidyselect:::rename_impl(...)
- tidyselect:::eval_select_impl(...)
- vctrs::vec_assert(x)
- vctrs:::stop_scalar_type(x, arg)
- vctrs:::stop_vctrs(msg, "vctrs_error_scalar_type", actual = x)
Run
rlang::last_trace()
to see the full context.I've attached my code and system info in case you want to see it. All the other datasets I have managed to use are fine.
Should I report the error at “inSitu” package then?
Thank you,
Stella
From: Gilberto Camara notifications@github.com Sent: 29 July 2020 13:54 To: e-sensing/sits sits@noreply.github.com Cc: MENDES CARNEIRO, STELLA (PGT) Stella.Mendes-Carneiro@warwick.ac.uk; Author author@noreply.github.com Subject: Re: [e-sensing/sits] sits_train Samples (#169)
Hi Stella
Please take a look at the “inSitu” package (https://github.com/e-sensing/inSitu https://github.com/e-sensing/inSitu). There are more samples there.
Best Gilberto
On 29 Jul 2020, at 14:21, Stella Mendes Carneiro notifications@github.com wrote:
Where can I find more samples to train my model for the Legal Amazon? I see the Mato Grosso sample, isn't it too small? Thanks
— You are receiving this because you are subscribed to this thread. Reply to this email directly, view it on GitHub https://github.com/e-sensing/sits/issues/169, or unsubscribe https://github.com/notifications/unsubscribe-auth/ABOHEDNJI5XBS6AUW27H5A3R6AH6JANCNFSM4PLRIKXA.
— You are receiving this because you authored the thread. Reply to this email directly, view it on GitHubhttps://github.com/e-sensing/sits/issues/169#issuecomment-665678440, or unsubscribehttps://github.com/notifications/unsubscribe-auth/AG5JRC2VKUG7K2O3IN3VBJ3R6ASYJANCNFSM4PLRIKXA.
<error/vctrs_error_scalar_type>
x
must be a vector, not atbl_df/tbl/data.frame/sits_tibble
object. Backtrace:
- sits::sits_select_bands(...)
- sits:::.sits_tibble_rename(data)
- dplyr::rename(., cube = coverage)
- tidyselect::eval_rename(expr(c(...)), .data)
- tidyselect:::rename_impl(...)
- tidyselect:::eval_select_impl(...)
- vctrs::vec_assert(x)
- vctrs:::stop_scalar_type(x, arg)
- vctrs:::stop_vctrs(msg, "vctrs_error_scalar_type", actual = x) Run
rlang::last_trace()
to see the full context.A tibble: 16 x 3
label count prop
1 Araguaia 3038 0.0245 2 Campo_Cerrado 17235 0.139 3 Cerradao 18576 0.150 4 Cerrado 49583 0.399 5 Cerrado_Rupestre 7143 0.0575 6 Ciliary_Forest 1989 0.0160 7 Dunas 550 0.00443 8 Fallow_Cotton 703 0.00566 9 Millet_Cotton 386 0.00311 10 Pasture 11740 0.0946 11 Perennial_Crop 132 0.00106 12 Semi_Perennial_Crop 825 0.00664 13 Soy_Corn 5737 0.0462 14 Soy_Cotton 4409 0.0355 15 Soy_Fallow 1873 0.0151 16 Soy_Millet 246 0.00198 [1] "mir" "blue" "nir" "red" "evi" "ndvi" # A tibble: 124,165 x 7 longitude latitude start_date end_date label cube time_series 1 -44.7 -12.7 2016-09-01 2017-08-31 Perennial_Crop MOD13Q1
2 -44.7 -12.7 2015-09-01 2016-08-31 Perennial_Crop MOD13Q1 3 -44.7 -12.7 2014-09-01 2015-08-31 Perennial_Crop MOD13Q1 4 -44.7 -12.7 2016-09-01 2017-08-31 Perennial_Crop MOD13Q1 5 -44.7 -12.7 2015-09-01 2016-08-31 Perennial_Crop MOD13Q1 6 -44.7 -12.7 2014-09-01 2015-08-31 Perennial_Crop MOD13Q1 7 -44.7 -12.7 2016-09-01 2017-08-31 Perennial_Crop MOD13Q1 8 -44.7 -12.7 2015-09-01 2016-08-31 Perennial_Crop MOD13Q1 9 -44.7 -12.7 2014-09-01 2015-08-31 Perennial_Crop MOD13Q1 10 -44.7 -12.7 2016-09-01 2017-08-31 Perennial_Crop MOD13Q1 # … with 124,155 more rows R version 4.0.2 (2020-06-22) Platform: x86_64-apple-darwin17.0 (64-bit) Running under: macOS Mojave 10.14.6 Matrix products: default BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
Random number generation: RNG: L'Ecuyer-CMRG Normal: Inversion Sample: Rejection
locale: [1] pt_BR.UTF-8/pt_BR.UTF-8/pt_BR.UTF-8/C/pt_BR.UTF-8/pt_BR.UTF-8
attached base packages: [1] stats4 grid stats graphics grDevices utils datasets methods [9] base
other attached packages: [1] inSitu_1.1.1 sits_0.9.5.1 wtss_2.2.0 keras_2.3.0.0.9000 [5] dplyr_1.0.0 sf_0.9-5 tmap_3.1 vctrs_0.3.2 [9] tidyselect_1.1.0 xgboost_1.1.1.1 signal_0.7-6 RSQLite_2.2.0 [13] RCurl_1.98-1.2 ranger_0.12.1 ptw_1.9-15 proto_1.0.0 [17] nnet_7.3-14 mgcv_1.8-31 nlme_3.1-148 MASS_7.3-51.6 [21] lwgeom_0.2-5 kohonen_3.0.10 imputeTS_3.0 imager_0.42.3 [25] magrittr_1.5 flexclust_1.4-0 modeltools_0.2-23 lattice_0.20-41 [29] e1071_1.7-3 dtwSat_0.2.6 ggplot2_3.3.2 snow_0.4-3 [33] raster_3.3-13 sp_1.4-2 zoo_1.8-8 dtwclust_5.5.6 [37] dtw_1.21-3 proxy_0.4-24 dendextend_1.13.4 DBI_1.1.0 [41] testthat_2.3.2 knitr_1.29 Rcpp_1.0.5 rmarkdown_2.3 [45] devtools_2.3.1 usethis_1.6.1
loaded via a namespace (and not attached): [1] utf8_1.1.4 reticulate_1.16-9000 htmlwidgets_1.5.1 pROC_1.16.2 [5] munsell_0.5.0 codetools_0.2-16 units_0.6-7 withr_2.2.0 [9] colorspace_1.4-1 config_0.3 tensorflow_2.2.0 TTR_0.23-6 [13] gbRd_0.4-11 Rdpack_1.0.0 bit64_0.9-7.1 rprojroot_1.3-2 [17] generics_0.0.2 ipred_0.9-9 xfun_0.16 R6_2.4.1 [21] clue_0.3-57 bitops_1.0-6 assertthat_0.2.1 promises_1.1.1 [25] scales_1.1.1 forecast_8.12 gtable_0.3.0 log4r_0.3.2 [29] bmp_0.3 processx_3.4.3 timeDate_3043.102 rlang_0.4.7 [33] zeallot_0.1.0 splines_4.0.2 rgdal_1.5-12 ModelMetrics_1.2.2.2 [37] dichromat_2.0-0 yaml_2.2.1 reshape2_1.4.4 abind_1.4-5 [41] crosstalk_1.1.0.1 backports_1.1.8 httpuv_1.5.4 quantmod_0.4.17 [45] caret_6.0-86 tools_4.0.2 lava_1.6.7 stinepack_1.4 [49] ellipsis_0.3.1 RColorBrewer_1.1-2 sessioninfo_1.1.1 plyr_1.8.6 [53] base64enc_0.1-3 classInt_0.4-3 purrr_0.3.4 ps_1.3.3 [57] prettyunits_1.1.1 rpart_4.1-15 viridis_0.5.1 fracdiff_1.5-1 [61] tmaptools_3.1 ggrepel_0.8.2 cluster_2.1.0 fs_1.4.2 [65] leafem_0.1.3 data.table_1.13.0 RSpectra_0.16-0 readbitmap_0.1.5 [69] lmtest_0.9-37 whisker_0.4 pkgload_1.1.0 shinyjs_1.1 [73] mime_0.9 evaluate_0.14 xtable_1.8-4 XML_3.99-0.5 [77] leaflet_2.0.3 jpeg_0.1-8.1 tfruns_1.4 gridExtra_2.3 [81] compiler_4.0.2 tibble_3.0.3 KernSmooth_2.23-17 crayon_1.3.4 [85] htmltools_0.5.0 later_1.1.0.1 tiff_0.1-5 RcppParallel_5.0.2 [89] lubridate_1.7.9 Matrix_1.2-18 cli_2.0.2 quadprog_1.5-8 [93] parallel_4.0.2 gower_0.2.2 igraph_1.2.5 pkgconfig_2.0.3 [97] bigmemory.sri_0.1.3 geosphere_1.5-10 recipes_0.1.13 foreach_1.5.0 [101] prodlim_2019.11.13 bibtex_0.4.2.2 stringr_1.4.0 callr_3.4.3 [105] digest_0.6.25 leafsync_0.1.0 curl_4.3 shiny_1.5.0 [109] urca_1.3-0 nloptr_1.2.2.2 jsonlite_1.7.0 lifecycle_0.2.0 [113] tseries_0.10-47 bigmemory_4.5.36 desc_1.2.0 viridisLite_0.3.0 [117] fansi_0.4.1 pillar_1.4.6 fastmap_1.0.1 pkgbuild_1.1.0 [121] survival_3.2-3 glue_1.4.1 xts_0.12-0 remotes_2.2.0 [125] png_0.1-7 iterators_1.0.12 bit_1.1-15.2 class_7.3-17 [129] stringi_1.4.6 blob_1.2.1 stars_0.4-3 memoise_1.1.0 — You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/e-sensing/sits/issues/169#issuecomment-665925369, or unsubscribe https://github.com/notifications/unsubscribe-auth/ABOHEDP7IPI7443JJNSUQCDR6CE4DANCNFSM4PLRIKXA.
Hi Gilberto,
It did work! Sorry for the delay. At least for Amazon it’s done. This week, as I get back from holidays, I’ll run it for cerrado.
Thanks a lot for the help! I would also like it to share it with you my working paper in a few weeks - the one I’ve been using e-sensing for.
Best,
Stella
On 11 Aug 2020, at 08:45, Gilberto Camara notifications@github.com wrote:
Hi Stella
Could you please install the inSitu package again? There were errors in the data set that have now been corrected. Please let me know if it works.
Best Gilberto
On 29 Jul 2020, at 23:01, Stella Mendes Carneiro notifications@github.com wrote:
Hi Gilberto,
Thanks for the quick reply. This package has been amazingly useful to me.
Unfortunately, the dataset amazonia_33K_12classes_4bands is not working. It shows me the following error:
<error/vctrs_error_scalar_type>
x
must be a vector, not atbl_df/tbl/data.frame/sits_tibble
object.Backtrace:
- sits::sits_select_bands(...)
- sits:::.sits_tibble_rename(data)
- dplyr::rename(., cube = coverage)
- tidyselect::eval_rename(expr(c(...)), .data)
- tidyselect:::rename_impl(...)
- tidyselect:::eval_select_impl(...)
- vctrs::vec_assert(x)
- vctrs:::stop_scalar_type(x, arg)
- vctrs:::stop_vctrs(msg, "vctrs_error_scalar_type", actual = x)
Run
rlang::last_trace()
to see the full context.I've attached my code and system info in case you want to see it. All the other datasets I have managed to use are fine.
Should I report the error at “inSitu” package then?
Thank you,
Stella
From: Gilberto Camara notifications@github.com Sent: 29 July 2020 13:54 To: e-sensing/sits sits@noreply.github.com Cc: MENDES CARNEIRO, STELLA (PGT) Stella.Mendes-Carneiro@warwick.ac.uk; Author author@noreply.github.com Subject: Re: [e-sensing/sits] sits_train Samples (#169)
Hi Stella
Please take a look at the “inSitu” package (https://github.com/e-sensing/inSitu https://github.com/e-sensing/inSitu). There are more samples there.
Best Gilberto
On 29 Jul 2020, at 14:21, Stella Mendes Carneiro notifications@github.com wrote:
Where can I find more samples to train my model for the Legal Amazon? I see the Mato Grosso sample, isn't it too small? Thanks
— You are receiving this because you are subscribed to this thread. Reply to this email directly, view it on GitHub https://github.com/e-sensing/sits/issues/169, or unsubscribe https://github.com/notifications/unsubscribe-auth/ABOHEDNJI5XBS6AUW27H5A3R6AH6JANCNFSM4PLRIKXA.
— You are receiving this because you authored the thread. Reply to this email directly, view it on GitHubhttps://github.com/e-sensing/sits/issues/169#issuecomment-665678440, or unsubscribehttps://github.com/notifications/unsubscribe-auth/AG5JRC2VKUG7K2O3IN3VBJ3R6ASYJANCNFSM4PLRIKXA.
<error/vctrs_error_scalar_type>
x
must be a vector, not atbl_df/tbl/data.frame/sits_tibble
object. Backtrace:
- sits::sits_select_bands(...)
- sits:::.sits_tibble_rename(data)
- dplyr::rename(., cube = coverage)
- tidyselect::eval_rename(expr(c(...)), .data)
- tidyselect:::rename_impl(...)
- tidyselect:::eval_select_impl(...)
- vctrs::vec_assert(x)
- vctrs:::stop_scalar_type(x, arg)
- vctrs:::stop_vctrs(msg, "vctrs_error_scalar_type", actual = x) Run
rlang::last_trace()
to see the full context.A tibble: 16 x 3
label count prop
1 Araguaia 3038 0.0245 2 Campo_Cerrado 17235 0.139 3 Cerradao 18576 0.150 4 Cerrado 49583 0.399 5 Cerrado_Rupestre 7143 0.0575 6 Ciliary_Forest 1989 0.0160 7 Dunas 550 0.00443 8 Fallow_Cotton 703 0.00566 9 Millet_Cotton 386 0.00311 10 Pasture 11740 0.0946 11 Perennial_Crop 132 0.00106 12 Semi_Perennial_Crop 825 0.00664 13 Soy_Corn 5737 0.0462 14 Soy_Cotton 4409 0.0355 15 Soy_Fallow 1873 0.0151 16 Soy_Millet 246 0.00198 [1] "mir" "blue" "nir" "red" "evi" "ndvi" # A tibble: 124,165 x 7 longitude latitude start_date end_date label cube time_series 1 -44.7 -12.7 2016-09-01 2017-08-31 Perennial_Crop MOD13Q1
2 -44.7 -12.7 2015-09-01 2016-08-31 Perennial_Crop MOD13Q1 3 -44.7 -12.7 2014-09-01 2015-08-31 Perennial_Crop MOD13Q1 4 -44.7 -12.7 2016-09-01 2017-08-31 Perennial_Crop MOD13Q1 5 -44.7 -12.7 2015-09-01 2016-08-31 Perennial_Crop MOD13Q1 6 -44.7 -12.7 2014-09-01 2015-08-31 Perennial_Crop MOD13Q1 7 -44.7 -12.7 2016-09-01 2017-08-31 Perennial_Crop MOD13Q1 8 -44.7 -12.7 2015-09-01 2016-08-31 Perennial_Crop MOD13Q1 9 -44.7 -12.7 2014-09-01 2015-08-31 Perennial_Crop MOD13Q1 10 -44.7 -12.7 2016-09-01 2017-08-31 Perennial_Crop MOD13Q1 # … with 124,155 more rows R version 4.0.2 (2020-06-22) Platform: x86_64-apple-darwin17.0 (64-bit) Running under: macOS Mojave 10.14.6 Matrix products: default BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
Random number generation: RNG: L'Ecuyer-CMRG Normal: Inversion Sample: Rejection
locale: [1] pt_BR.UTF-8/pt_BR.UTF-8/pt_BR.UTF-8/C/pt_BR.UTF-8/pt_BR.UTF-8
attached base packages: [1] stats4 grid stats graphics grDevices utils datasets methods [9] base
other attached packages: [1] inSitu_1.1.1 sits_0.9.5.1 wtss_2.2.0 keras_2.3.0.0.9000 [5] dplyr_1.0.0 sf_0.9-5 tmap_3.1 vctrs_0.3.2 [9] tidyselect_1.1.0 xgboost_1.1.1.1 signal_0.7-6 RSQLite_2.2.0 [13] RCurl_1.98-1.2 ranger_0.12.1 ptw_1.9-15 proto_1.0.0 [17] nnet_7.3-14 mgcv_1.8-31 nlme_3.1-148 MASS_7.3-51.6 [21] lwgeom_0.2-5 kohonen_3.0.10 imputeTS_3.0 imager_0.42.3 [25] magrittr_1.5 flexclust_1.4-0 modeltools_0.2-23 lattice_0.20-41 [29] e1071_1.7-3 dtwSat_0.2.6 ggplot2_3.3.2 snow_0.4-3 [33] raster_3.3-13 sp_1.4-2 zoo_1.8-8 dtwclust_5.5.6 [37] dtw_1.21-3 proxy_0.4-24 dendextend_1.13.4 DBI_1.1.0 [41] testthat_2.3.2 knitr_1.29 Rcpp_1.0.5 rmarkdown_2.3 [45] devtools_2.3.1 usethis_1.6.1
loaded via a namespace (and not attached): [1] utf8_1.1.4 reticulate_1.16-9000 htmlwidgets_1.5.1 pROC_1.16.2 [5] munsell_0.5.0 codetools_0.2-16 units_0.6-7 withr_2.2.0 [9] colorspace_1.4-1 config_0.3 tensorflow_2.2.0 TTR_0.23-6 [13] gbRd_0.4-11 Rdpack_1.0.0 bit64_0.9-7.1 rprojroot_1.3-2 [17] generics_0.0.2 ipred_0.9-9 xfun_0.16 R6_2.4.1 [21] clue_0.3-57 bitops_1.0-6 assertthat_0.2.1 promises_1.1.1 [25] scales_1.1.1 forecast_8.12 gtable_0.3.0 log4r_0.3.2 [29] bmp_0.3 processx_3.4.3 timeDate_3043.102 rlang_0.4.7 [33] zeallot_0.1.0 splines_4.0.2 rgdal_1.5-12 ModelMetrics_1.2.2.2 [37] dichromat_2.0-0 yaml_2.2.1 reshape2_1.4.4 abind_1.4-5 [41] crosstalk_1.1.0.1 backports_1.1.8 httpuv_1.5.4 quantmod_0.4.17 [45] caret_6.0-86 tools_4.0.2 lava_1.6.7 stinepack_1.4 [49] ellipsis_0.3.1 RColorBrewer_1.1-2 sessioninfo_1.1.1 plyr_1.8.6 [53] base64enc_0.1-3 classInt_0.4-3 purrr_0.3.4 ps_1.3.3 [57] prettyunits_1.1.1 rpart_4.1-15 viridis_0.5.1 fracdiff_1.5-1 [61] tmaptools_3.1 ggrepel_0.8.2 cluster_2.1.0 fs_1.4.2 [65] leafem_0.1.3 data.table_1.13.0 RSpectra_0.16-0 readbitmap_0.1.5 [69] lmtest_0.9-37 whisker_0.4 pkgload_1.1.0 shinyjs_1.1 [73] mime_0.9 evaluate_0.14 xtable_1.8-4 XML_3.99-0.5 [77] leaflet_2.0.3 jpeg_0.1-8.1 tfruns_1.4 gridExtra_2.3 [81] compiler_4.0.2 tibble_3.0.3 KernSmooth_2.23-17 crayon_1.3.4 [85] htmltools_0.5.0 later_1.1.0.1 tiff_0.1-5 RcppParallel_5.0.2 [89] lubridate_1.7.9 Matrix_1.2-18 cli_2.0.2 quadprog_1.5-8 [93] parallel_4.0.2 gower_0.2.2 igraph_1.2.5 pkgconfig_2.0.3 [97] bigmemory.sri_0.1.3 geosphere_1.5-10 recipes_0.1.13 foreach_1.5.0 [101] prodlim_2019.11.13 bibtex_0.4.2.2 stringr_1.4.0 callr_3.4.3 [105] digest_0.6.25 leafsync_0.1.0 curl_4.3 shiny_1.5.0 [109] urca_1.3-0 nloptr_1.2.2.2 jsonlite_1.7.0 lifecycle_0.2.0 [113] tseries_0.10-47 bigmemory_4.5.36 desc_1.2.0 viridisLite_0.3.0 [117] fansi_0.4.1 pillar_1.4.6 fastmap_1.0.1 pkgbuild_1.1.0 [121] survival_3.2-3 glue_1.4.1 xts_0.12-0 remotes_2.2.0 [125] png_0.1-7 iterators_1.0.12 bit_1.1-15.2 class_7.3-17 [129] stringi_1.4.6 blob_1.2.1 stars_0.4-3 memoise_1.1.0 — You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/e-sensing/sits/issues/169#issuecomment-665925369, or unsubscribe https://github.com/notifications/unsubscribe-auth/ABOHEDP7IPI7443JJNSUQCDR6CE4DANCNFSM4PLRIKXA.
— You are receiving this because you authored the thread. Reply to this email directly, view it on GitHubhttps://github.com/e-sensing/sits/issues/169#issuecomment-671786392, or unsubscribehttps://github.com/notifications/unsubscribe-auth/AG5JRCZAFIIUER4AVMITWBLSADZKLANCNFSM4PLRIKXA.
Problem solved.
Where can I find more samples to train my model for the Legal Amazon? I see the Mato Grosso sample, isn't it too small? Thanks