Closed IndrajeetPatil closed 3 years ago
library(lme4)
#> Loading required package: Matrix
library(parameters)
data(sleepstudy)
set.seed(12345)
sleepstudy$grp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$subgrp <- NA
for (i in 1:5) {
filter_group <- sleepstudy$grp == i
sleepstudy$subgrp[filter_group] <-
sample(1:30, size = sum(filter_group), replace = TRUE)
}
model <- lmer(
Reaction ~ Days + (1 | grp / subgrp) + (1 + Days | Subject),
data = sleepstudy
)
#> boundary (singular) fit: see ?isSingular
model_parameters(model)
#> Parameter | Coefficient | SE | 95% CI | t(172) | p
#> ---------------------------------------------------------------------
#> (Intercept) | 251.41 | 6.82 | [238.03, 264.78] | 36.84 | < .001
#> Days | 10.47 | 1.55 | [ 7.44, 13.50] | 6.77 | < .001
model_parameters(model, effects = "random")
#> # subgrp:grp
#>
#> Parameter | Coefficient | SE | 95% CI
#> ------------------------------------------------------
#> (Intercept) [1:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [1:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [1:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [1:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [1:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [2:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [2:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [2:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [2:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [3:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [3:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [3:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [4:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [4:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [5:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [5:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [5:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [5:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [6:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [6:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [6:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [7:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [7:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [7:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [7:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [7:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [8:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [8:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [8:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [8:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [9:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [9:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [9:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [9:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [10:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [10:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [10:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [10:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [11:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [11:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [11:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [11:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [12:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [12:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [12:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [13:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [13:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [14:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [14:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [14:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [15:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [15:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [15:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [16:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [16:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [16:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [16:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [17:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [17:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [17:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [17:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [18:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [18:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [18:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [18:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [18:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [19:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [19:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [19:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [19:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [20:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [20:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [20:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [20:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [21:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [21:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [21:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [21:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [22:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [22:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [22:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [23:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [23:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [23:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [24:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [24:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [24:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [25:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [25:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [25:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [25:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [26:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [26:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [26:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [26:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [26:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [27:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [27:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [27:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [27:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [28:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [28:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [28:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [29:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [29:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [29:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [30:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [30:5] | 0.00 | 0.00 | [0.00, 0.00]
#>
#> # Subject
#>
#> Parameter | Coefficient | SE | 95% CI
#> ----------------------------------------------------------
#> (Intercept) [308] | 2.26 | 12.07 | [-21.40, 25.92]
#> (Intercept) [309] | -40.40 | 12.07 | [-64.06, -16.74]
#> (Intercept) [310] | -38.96 | 12.07 | [-62.62, -15.30]
#> (Intercept) [330] | 23.69 | 12.07 | [ 0.03, 47.35]
#> (Intercept) [331] | 22.26 | 12.07 | [ -1.40, 45.92]
#> (Intercept) [332] | 9.04 | 12.07 | [-14.62, 32.70]
#> (Intercept) [333] | 16.84 | 12.07 | [ -6.82, 40.50]
#> (Intercept) [334] | -7.23 | 12.07 | [-30.89, 16.43]
#> (Intercept) [335] | -0.33 | 12.07 | [-23.99, 23.32]
#> (Intercept) [337] | 34.89 | 12.07 | [ 11.23, 58.55]
#> (Intercept) [349] | -25.21 | 12.07 | [-48.87, -1.55]
#> (Intercept) [350] | -13.07 | 12.07 | [-36.73, 10.59]
#> (Intercept) [351] | 4.58 | 12.07 | [-19.08, 28.24]
#> (Intercept) [352] | 20.86 | 12.07 | [ -2.79, 44.52]
#> (Intercept) [369] | 3.28 | 12.07 | [-20.38, 26.93]
#> (Intercept) [370] | -25.61 | 12.07 | [-49.27, -1.95]
#> (Intercept) [371] | 0.81 | 12.07 | [-22.85, 24.47]
#> (Intercept) [372] | 12.31 | 12.07 | [-11.34, 35.97]
#> Days [308] | 9.20 | 2.30 | [ 4.68, 13.72]
#> Days [309] | -8.62 | 2.30 | [-13.14, -4.10]
#> Days [310] | -5.45 | 2.30 | [ -9.97, -0.93]
#> Days [330] | -4.81 | 2.30 | [ -9.33, -0.30]
#> Days [331] | -3.07 | 2.30 | [ -7.59, 1.45]
#> Days [332] | -0.27 | 2.30 | [ -4.79, 4.25]
#> Days [333] | -0.22 | 2.30 | [ -4.74, 4.29]
#> Days [334] | 1.07 | 2.30 | [ -3.44, 5.59]
#> Days [335] | -10.75 | 2.30 | [-15.27, -6.23]
#> Days [337] | 8.63 | 2.30 | [ 4.11, 13.15]
#> Days [349] | 1.17 | 2.30 | [ -3.34, 5.69]
#> Days [350] | 6.61 | 2.30 | [ 2.10, 11.13]
#> Days [351] | -3.02 | 2.30 | [ -7.53, 1.50]
#> Days [352] | 3.54 | 2.30 | [ -0.98, 8.05]
#> Days [369] | 0.87 | 2.30 | [ -3.65, 5.39]
#> Days [370] | 4.82 | 2.30 | [ 0.31, 9.34]
#> Days [371] | -0.99 | 2.30 | [ -5.51, 3.53]
#> Days [372] | 1.28 | 2.30 | [ -3.23, 5.80]
#>
#> # grp
#>
#> Parameter | Coefficient | SE | 95% CI
#> ---------------------------------------------------
#> (Intercept) [1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [5] | 0.00 | 0.00 | [0.00, 0.00]
model_parameters(model, effects = "random_variance")
#> # Residual
#>
#> Parameter | Coefficient | CI
#> --------------------------------------
#> SD (Observations) | 25.59 | 0.95
#>
#> # subgrp:grp
#>
#> Parameter | Coefficient | CI
#> -----------------------------------
#> SD (Intercept) | 0.00 | 0.95
#>
#> # Subject
#>
#> Parameter | Coefficient | CI
#> -----------------------------------------
#> SD (Intercept) | 24.74 | 0.95
#> SD (Days) | 5.92 | 0.95
#> Rho (Intercept~Days) | 0.26 | 0.95
#>
#> # grp
#>
#> Parameter | Coefficient | CI
#> -----------------------------------
#> SD (Intercept) | 0.00 | 0.95
model_parameters(model, effects = "all")
#> # Fixed Effects
#>
#> Parameter | Coefficient | SE | 95% CI
#> ---------------------------------------------------
#> (Intercept) | 251.41 | 6.82 | [238.03, 264.78]
#> Days | 10.47 | 1.55 | [ 7.44, 13.50]
#>
#> # Random Effects: subgrp:grp
#>
#> Parameter | Coefficient | SE | 95% CI
#> ------------------------------------------------------
#> (Intercept) [1:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [1:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [1:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [1:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [1:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [2:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [2:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [2:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [2:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [3:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [3:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [3:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [4:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [4:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [5:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [5:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [5:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [5:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [6:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [6:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [6:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [7:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [7:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [7:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [7:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [7:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [8:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [8:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [8:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [8:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [9:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [9:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [9:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [9:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [10:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [10:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [10:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [10:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [11:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [11:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [11:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [11:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [12:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [12:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [12:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [13:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [13:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [14:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [14:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [14:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [15:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [15:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [15:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [16:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [16:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [16:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [16:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [17:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [17:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [17:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [17:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [18:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [18:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [18:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [18:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [18:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [19:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [19:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [19:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [19:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [20:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [20:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [20:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [20:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [21:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [21:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [21:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [21:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [22:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [22:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [22:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [23:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [23:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [23:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [24:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [24:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [24:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [25:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [25:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [25:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [25:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [26:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [26:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [26:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [26:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [26:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [27:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [27:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [27:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [27:5] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [28:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [28:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [28:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [29:1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [29:3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [29:4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [30:2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [30:5] | 0.00 | 0.00 | [0.00, 0.00]
#>
#> # Random Effects Variances: subgrp:grp
#>
#> Parameter | Coefficient | CI
#> -----------------------------------
#> SD (Intercept) | 0.00 | 0.95
#>
#> # Random Effects: Subject
#>
#> Parameter | Coefficient | SE | 95% CI
#> ----------------------------------------------------------
#> (Intercept) [308] | 2.26 | 12.07 | [-21.40, 25.92]
#> (Intercept) [309] | -40.40 | 12.07 | [-64.06, -16.74]
#> (Intercept) [310] | -38.96 | 12.07 | [-62.62, -15.30]
#> (Intercept) [330] | 23.69 | 12.07 | [ 0.03, 47.35]
#> (Intercept) [331] | 22.26 | 12.07 | [ -1.40, 45.92]
#> (Intercept) [332] | 9.04 | 12.07 | [-14.62, 32.70]
#> (Intercept) [333] | 16.84 | 12.07 | [ -6.82, 40.50]
#> (Intercept) [334] | -7.23 | 12.07 | [-30.89, 16.43]
#> (Intercept) [335] | -0.33 | 12.07 | [-23.99, 23.32]
#> (Intercept) [337] | 34.89 | 12.07 | [ 11.23, 58.55]
#> (Intercept) [349] | -25.21 | 12.07 | [-48.87, -1.55]
#> (Intercept) [350] | -13.07 | 12.07 | [-36.73, 10.59]
#> (Intercept) [351] | 4.58 | 12.07 | [-19.08, 28.24]
#> (Intercept) [352] | 20.86 | 12.07 | [ -2.79, 44.52]
#> (Intercept) [369] | 3.28 | 12.07 | [-20.38, 26.93]
#> (Intercept) [370] | -25.61 | 12.07 | [-49.27, -1.95]
#> (Intercept) [371] | 0.81 | 12.07 | [-22.85, 24.47]
#> (Intercept) [372] | 12.31 | 12.07 | [-11.34, 35.97]
#> Days [308] | 9.20 | 2.30 | [ 4.68, 13.72]
#> Days [309] | -8.62 | 2.30 | [-13.14, -4.10]
#> Days [310] | -5.45 | 2.30 | [ -9.97, -0.93]
#> Days [330] | -4.81 | 2.30 | [ -9.33, -0.30]
#> Days [331] | -3.07 | 2.30 | [ -7.59, 1.45]
#> Days [332] | -0.27 | 2.30 | [ -4.79, 4.25]
#> Days [333] | -0.22 | 2.30 | [ -4.74, 4.29]
#> Days [334] | 1.07 | 2.30 | [ -3.44, 5.59]
#> Days [335] | -10.75 | 2.30 | [-15.27, -6.23]
#> Days [337] | 8.63 | 2.30 | [ 4.11, 13.15]
#> Days [349] | 1.17 | 2.30 | [ -3.34, 5.69]
#> Days [350] | 6.61 | 2.30 | [ 2.10, 11.13]
#> Days [351] | -3.02 | 2.30 | [ -7.53, 1.50]
#> Days [352] | 3.54 | 2.30 | [ -0.98, 8.05]
#> Days [369] | 0.87 | 2.30 | [ -3.65, 5.39]
#> Days [370] | 4.82 | 2.30 | [ 0.31, 9.34]
#> Days [371] | -0.99 | 2.30 | [ -5.51, 3.53]
#> Days [372] | 1.28 | 2.30 | [ -3.23, 5.80]
#>
#> # Random Effects Variances: Subject
#>
#> Parameter | Coefficient | CI
#> -----------------------------------------
#> SD (Intercept) | 24.74 | 0.95
#> SD (Days) | 5.92 | 0.95
#> Rho (Intercept~Days) | 0.26 | 0.95
#>
#> # Random Effects: grp
#>
#> Parameter | Coefficient | SE | 95% CI
#> ---------------------------------------------------
#> (Intercept) [1] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [2] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [3] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [4] | 0.00 | 0.00 | [0.00, 0.00]
#> (Intercept) [5] | 0.00 | 0.00 | [0.00, 0.00]
#>
#> # Random Effects Variances: grp
#>
#> Parameter | Coefficient | CI
#> -----------------------------------
#> SD (Intercept) | 0.00 | 0.95
#>
#> # Random Effects Variances: Residual
#>
#> Parameter | Coefficient | CI
#> --------------------------------------
#> SD (Observations) | 25.59 | 0.95
as.data.frame(model_parameters(model))
#> Parameter Coefficient SE CI CI_low CI_high t df_error
#> 1 (Intercept) 251.40510 6.824563 0.95 238.029208 264.78100 36.838274 172
#> 2 Days 10.46729 1.545785 0.95 7.437604 13.49697 6.771503 172
#> p
#> 1 4.506418e-297
#> 2 1.274513e-11
as.data.frame(model_parameters(model, effects = "random"))
#> Parameter Level Coefficient SE CI CI_low CI_high
#> 1 (Intercept) 1:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 2 (Intercept) 1:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 3 (Intercept) 1:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 4 (Intercept) 1:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 5 (Intercept) 1:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 6 (Intercept) 2:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 7 (Intercept) 2:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 8 (Intercept) 2:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 9 (Intercept) 2:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 10 (Intercept) 3:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 11 (Intercept) 3:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 12 (Intercept) 3:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 13 (Intercept) 4:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 14 (Intercept) 4:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 15 (Intercept) 5:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 16 (Intercept) 5:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 17 (Intercept) 5:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 18 (Intercept) 5:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 19 (Intercept) 6:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 20 (Intercept) 6:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 21 (Intercept) 6:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 22 (Intercept) 7:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 23 (Intercept) 7:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 24 (Intercept) 7:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 25 (Intercept) 7:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 26 (Intercept) 7:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 27 (Intercept) 8:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 28 (Intercept) 8:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 29 (Intercept) 8:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 30 (Intercept) 8:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 31 (Intercept) 9:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 32 (Intercept) 9:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 33 (Intercept) 9:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 34 (Intercept) 9:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 35 (Intercept) 10:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 36 (Intercept) 10:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 37 (Intercept) 10:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 38 (Intercept) 10:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 39 (Intercept) 11:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 40 (Intercept) 11:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 41 (Intercept) 11:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 42 (Intercept) 11:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 43 (Intercept) 12:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 44 (Intercept) 12:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 45 (Intercept) 12:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 46 (Intercept) 13:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 47 (Intercept) 13:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 48 (Intercept) 14:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 49 (Intercept) 14:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 50 (Intercept) 14:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 51 (Intercept) 15:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 52 (Intercept) 15:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 53 (Intercept) 15:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 54 (Intercept) 16:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 55 (Intercept) 16:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 56 (Intercept) 16:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 57 (Intercept) 16:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 58 (Intercept) 17:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 59 (Intercept) 17:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 60 (Intercept) 17:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 61 (Intercept) 17:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 62 (Intercept) 18:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 63 (Intercept) 18:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 64 (Intercept) 18:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 65 (Intercept) 18:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 66 (Intercept) 18:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 67 (Intercept) 19:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 68 (Intercept) 19:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 69 (Intercept) 19:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 70 (Intercept) 19:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 71 (Intercept) 20:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 72 (Intercept) 20:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 73 (Intercept) 20:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 74 (Intercept) 20:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 75 (Intercept) 21:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 76 (Intercept) 21:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 77 (Intercept) 21:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 78 (Intercept) 21:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 79 (Intercept) 22:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 80 (Intercept) 22:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 81 (Intercept) 22:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 82 (Intercept) 23:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 83 (Intercept) 23:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 84 (Intercept) 23:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 85 (Intercept) 24:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 86 (Intercept) 24:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 87 (Intercept) 24:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 88 (Intercept) 25:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 89 (Intercept) 25:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 90 (Intercept) 25:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 91 (Intercept) 25:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 92 (Intercept) 26:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 93 (Intercept) 26:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 94 (Intercept) 26:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 95 (Intercept) 26:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 96 (Intercept) 26:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 97 (Intercept) 27:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 98 (Intercept) 27:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 99 (Intercept) 27:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 100 (Intercept) 27:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 101 (Intercept) 28:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 102 (Intercept) 28:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 103 (Intercept) 28:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 104 (Intercept) 29:1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 105 (Intercept) 29:3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 106 (Intercept) 29:4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 107 (Intercept) 30:2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 108 (Intercept) 30:5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 109 (Intercept) 308 2.2586490 12.070829 0.95 -21.39974083 25.9170388
#> 110 (Intercept) 309 -40.3986460 12.070829 0.95 -64.05703582 -16.7402562
#> 111 (Intercept) 310 -38.9602863 12.070829 0.95 -62.61867609 -15.3018965
#> 112 (Intercept) 330 23.6904488 12.070829 0.95 0.03205901 47.3488386
#> 113 (Intercept) 331 22.2601693 12.070829 0.95 -1.39822045 45.9185591
#> 114 (Intercept) 332 9.0395213 12.070829 0.95 -14.61886853 32.6979110
#> 115 (Intercept) 333 16.8404251 12.070829 0.95 -6.81796471 40.4988149
#> 116 (Intercept) 334 -7.2325676 12.070829 0.95 -30.89095743 16.4258221
#> 117 (Intercept) 335 -0.3337941 12.070829 0.95 -23.99218384 23.3245957
#> 118 (Intercept) 337 34.8904213 12.070829 0.95 11.23203155 58.5488111
#> 119 (Intercept) 349 -25.2100936 12.070829 0.95 -48.86848342 -1.5517038
#> 120 (Intercept) 350 -13.0698931 12.070829 0.95 -36.72828289 10.5884967
#> 121 (Intercept) 351 4.5778065 12.070829 0.95 -19.08058328 28.2361963
#> 122 (Intercept) 352 20.8636198 12.070829 0.95 -2.79476999 44.5220096
#> 123 (Intercept) 369 3.2754602 12.070829 0.95 -20.38292958 26.9338500
#> 124 (Intercept) 370 -25.6128192 12.070829 0.95 -49.27120900 -1.9544294
#> 125 (Intercept) 371 0.8070305 12.070829 0.95 -22.85135927 24.4654203
#> 126 (Intercept) 372 12.3145482 12.070829 0.95 -11.34384164 35.9729379
#> 127 Days 308 9.1989554 2.304835 0.95 4.68156229 13.7163486
#> 128 Days 309 -8.6196916 2.304835 0.95 -13.13708477 -4.1022985
#> 129 Days 310 -5.4488740 2.304835 0.95 -9.96626711 -0.9314808
#> 130 Days 330 -4.8143202 2.304835 0.95 -9.33171332 -0.2969270
#> 131 Days 331 -3.0698868 2.304835 0.95 -7.58727992 1.4475064
#> 132 Days 332 -0.2721692 2.304835 0.95 -4.78956240 4.2452239
#> 133 Days 333 -0.2236223 2.304835 0.95 -4.74101548 4.2937708
#> 134 Days 334 1.0745734 2.304835 0.95 -3.44281976 5.5919665
#> 135 Days 335 -10.7521396 2.304835 0.95 -15.26953276 -6.2347465
#> 136 Days 337 8.6282718 2.304835 0.95 4.11087867 13.1456650
#> 137 Days 349 1.1734096 2.304835 0.95 -3.34398359 5.6908027
#> 138 Days 350 6.6141917 2.304835 0.95 2.09679851 11.1315848
#> 139 Days 351 -3.0152512 2.304835 0.95 -7.53264440 1.5021419
#> 140 Days 352 3.5360090 2.304835 0.95 -0.98138415 8.0534022
#> 141 Days 369 0.8722153 2.304835 0.95 -3.64517780 5.3896085
#> 142 Days 370 4.8224533 2.304835 0.95 0.30506011 9.3398464
#> 143 Days 371 -0.9881532 2.304835 0.95 -5.50554637 3.5292399
#> 144 Days 372 1.2840287 2.304835 0.95 -3.23336449 5.8014218
#> 145 (Intercept) 1 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 146 (Intercept) 2 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 147 (Intercept) 3 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 148 (Intercept) 4 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> 149 (Intercept) 5 0.0000000 0.000000 0.95 0.00000000 0.0000000
#> Effects Group
#> 1 random subgrp:grp
#> 2 random subgrp:grp
#> 3 random subgrp:grp
#> 4 random subgrp:grp
#> 5 random subgrp:grp
#> 6 random subgrp:grp
#> 7 random subgrp:grp
#> 8 random subgrp:grp
#> 9 random subgrp:grp
#> 10 random subgrp:grp
#> 11 random subgrp:grp
#> 12 random subgrp:grp
#> 13 random subgrp:grp
#> 14 random subgrp:grp
#> 15 random subgrp:grp
#> 16 random subgrp:grp
#> 17 random subgrp:grp
#> 18 random subgrp:grp
#> 19 random subgrp:grp
#> 20 random subgrp:grp
#> 21 random subgrp:grp
#> 22 random subgrp:grp
#> 23 random subgrp:grp
#> 24 random subgrp:grp
#> 25 random subgrp:grp
#> 26 random subgrp:grp
#> 27 random subgrp:grp
#> 28 random subgrp:grp
#> 29 random subgrp:grp
#> 30 random subgrp:grp
#> 31 random subgrp:grp
#> 32 random subgrp:grp
#> 33 random subgrp:grp
#> 34 random subgrp:grp
#> 35 random subgrp:grp
#> 36 random subgrp:grp
#> 37 random subgrp:grp
#> 38 random subgrp:grp
#> 39 random subgrp:grp
#> 40 random subgrp:grp
#> 41 random subgrp:grp
#> 42 random subgrp:grp
#> 43 random subgrp:grp
#> 44 random subgrp:grp
#> 45 random subgrp:grp
#> 46 random subgrp:grp
#> 47 random subgrp:grp
#> 48 random subgrp:grp
#> 49 random subgrp:grp
#> 50 random subgrp:grp
#> 51 random subgrp:grp
#> 52 random subgrp:grp
#> 53 random subgrp:grp
#> 54 random subgrp:grp
#> 55 random subgrp:grp
#> 56 random subgrp:grp
#> 57 random subgrp:grp
#> 58 random subgrp:grp
#> 59 random subgrp:grp
#> 60 random subgrp:grp
#> 61 random subgrp:grp
#> 62 random subgrp:grp
#> 63 random subgrp:grp
#> 64 random subgrp:grp
#> 65 random subgrp:grp
#> 66 random subgrp:grp
#> 67 random subgrp:grp
#> 68 random subgrp:grp
#> 69 random subgrp:grp
#> 70 random subgrp:grp
#> 71 random subgrp:grp
#> 72 random subgrp:grp
#> 73 random subgrp:grp
#> 74 random subgrp:grp
#> 75 random subgrp:grp
#> 76 random subgrp:grp
#> 77 random subgrp:grp
#> 78 random subgrp:grp
#> 79 random subgrp:grp
#> 80 random subgrp:grp
#> 81 random subgrp:grp
#> 82 random subgrp:grp
#> 83 random subgrp:grp
#> 84 random subgrp:grp
#> 85 random subgrp:grp
#> 86 random subgrp:grp
#> 87 random subgrp:grp
#> 88 random subgrp:grp
#> 89 random subgrp:grp
#> 90 random subgrp:grp
#> 91 random subgrp:grp
#> 92 random subgrp:grp
#> 93 random subgrp:grp
#> 94 random subgrp:grp
#> 95 random subgrp:grp
#> 96 random subgrp:grp
#> 97 random subgrp:grp
#> 98 random subgrp:grp
#> 99 random subgrp:grp
#> 100 random subgrp:grp
#> 101 random subgrp:grp
#> 102 random subgrp:grp
#> 103 random subgrp:grp
#> 104 random subgrp:grp
#> 105 random subgrp:grp
#> 106 random subgrp:grp
#> 107 random subgrp:grp
#> 108 random subgrp:grp
#> 109 random Subject
#> 110 random Subject
#> 111 random Subject
#> 112 random Subject
#> 113 random Subject
#> 114 random Subject
#> 115 random Subject
#> 116 random Subject
#> 117 random Subject
#> 118 random Subject
#> 119 random Subject
#> 120 random Subject
#> 121 random Subject
#> 122 random Subject
#> 123 random Subject
#> 124 random Subject
#> 125 random Subject
#> 126 random Subject
#> 127 random Subject
#> 128 random Subject
#> 129 random Subject
#> 130 random Subject
#> 131 random Subject
#> 132 random Subject
#> 133 random Subject
#> 134 random Subject
#> 135 random Subject
#> 136 random Subject
#> 137 random Subject
#> 138 random Subject
#> 139 random Subject
#> 140 random Subject
#> 141 random Subject
#> 142 random Subject
#> 143 random Subject
#> 144 random Subject
#> 145 random grp
#> 146 random grp
#> 147 random grp
#> 148 random grp
#> 149 random grp
as.data.frame(model_parameters(model, effects = "random_variance"))
#> Parameter Level Coefficient SE CI CI_low CI_high
#> 1 SD (Observations) NA 25.5918199 NA 0.95 NA NA
#> 2 SD (Intercept) NA 0.0000000 NA 0.95 NA NA
#> 3 SD (Intercept) NA 24.7404800 NA 0.95 NA NA
#> 4 SD (Intercept) NA 0.0000000 NA 0.95 NA NA
#> 5 SD (Days) NA 5.9221133 NA 0.95 NA NA
#> 6 Rho (Intercept~Days) NA 0.2560383 NA 0.95 NA NA
#> Effects Group
#> 1 random_variances Residual
#> 2 random_variances subgrp:grp
#> 3 random_variances Subject
#> 4 random_variances grp
#> 5 random_variances Subject
#> 6 random_variances Subject
as.data.frame(model_parameters(model, effects = "all"))
#> Parameter Level Coefficient SE CI CI_low
#> 1 (Intercept) <NA> 251.4051048 6.824563 0.95 238.02920796
#> 2 Days <NA> 10.4672860 1.545785 0.95 7.43760357
#> 3 (Intercept) 1:1 0.0000000 0.000000 0.95 0.00000000
#> 4 (Intercept) 1:2 0.0000000 0.000000 0.95 0.00000000
#> 5 (Intercept) 1:3 0.0000000 0.000000 0.95 0.00000000
#> 6 (Intercept) 1:4 0.0000000 0.000000 0.95 0.00000000
#> 7 (Intercept) 1:5 0.0000000 0.000000 0.95 0.00000000
#> 8 (Intercept) 2:1 0.0000000 0.000000 0.95 0.00000000
#> 9 (Intercept) 2:2 0.0000000 0.000000 0.95 0.00000000
#> 10 (Intercept) 2:3 0.0000000 0.000000 0.95 0.00000000
#> 11 (Intercept) 2:5 0.0000000 0.000000 0.95 0.00000000
#> 12 (Intercept) 3:2 0.0000000 0.000000 0.95 0.00000000
#> 13 (Intercept) 3:4 0.0000000 0.000000 0.95 0.00000000
#> 14 (Intercept) 3:5 0.0000000 0.000000 0.95 0.00000000
#> 15 (Intercept) 4:1 0.0000000 0.000000 0.95 0.00000000
#> 16 (Intercept) 4:3 0.0000000 0.000000 0.95 0.00000000
#> 17 (Intercept) 5:1 0.0000000 0.000000 0.95 0.00000000
#> 18 (Intercept) 5:2 0.0000000 0.000000 0.95 0.00000000
#> 19 (Intercept) 5:3 0.0000000 0.000000 0.95 0.00000000
#> 20 (Intercept) 5:5 0.0000000 0.000000 0.95 0.00000000
#> 21 (Intercept) 6:1 0.0000000 0.000000 0.95 0.00000000
#> 22 (Intercept) 6:2 0.0000000 0.000000 0.95 0.00000000
#> 23 (Intercept) 6:4 0.0000000 0.000000 0.95 0.00000000
#> 24 (Intercept) 7:1 0.0000000 0.000000 0.95 0.00000000
#> 25 (Intercept) 7:2 0.0000000 0.000000 0.95 0.00000000
#> 26 (Intercept) 7:3 0.0000000 0.000000 0.95 0.00000000
#> 27 (Intercept) 7:4 0.0000000 0.000000 0.95 0.00000000
#> 28 (Intercept) 7:5 0.0000000 0.000000 0.95 0.00000000
#> 29 (Intercept) 8:1 0.0000000 0.000000 0.95 0.00000000
#> 30 (Intercept) 8:2 0.0000000 0.000000 0.95 0.00000000
#> 31 (Intercept) 8:3 0.0000000 0.000000 0.95 0.00000000
#> 32 (Intercept) 8:5 0.0000000 0.000000 0.95 0.00000000
#> 33 (Intercept) 9:2 0.0000000 0.000000 0.95 0.00000000
#> 34 (Intercept) 9:3 0.0000000 0.000000 0.95 0.00000000
#> 35 (Intercept) 9:4 0.0000000 0.000000 0.95 0.00000000
#> 36 (Intercept) 9:5 0.0000000 0.000000 0.95 0.00000000
#> 37 (Intercept) 10:1 0.0000000 0.000000 0.95 0.00000000
#> 38 (Intercept) 10:3 0.0000000 0.000000 0.95 0.00000000
#> 39 (Intercept) 10:4 0.0000000 0.000000 0.95 0.00000000
#> 40 (Intercept) 10:5 0.0000000 0.000000 0.95 0.00000000
#> 41 (Intercept) 11:1 0.0000000 0.000000 0.95 0.00000000
#> 42 (Intercept) 11:2 0.0000000 0.000000 0.95 0.00000000
#> 43 (Intercept) 11:3 0.0000000 0.000000 0.95 0.00000000
#> 44 (Intercept) 11:4 0.0000000 0.000000 0.95 0.00000000
#> 45 (Intercept) 12:2 0.0000000 0.000000 0.95 0.00000000
#> 46 (Intercept) 12:4 0.0000000 0.000000 0.95 0.00000000
#> 47 (Intercept) 12:5 0.0000000 0.000000 0.95 0.00000000
#> 48 (Intercept) 13:2 0.0000000 0.000000 0.95 0.00000000
#> 49 (Intercept) 13:5 0.0000000 0.000000 0.95 0.00000000
#> 50 (Intercept) 14:1 0.0000000 0.000000 0.95 0.00000000
#> 51 (Intercept) 14:2 0.0000000 0.000000 0.95 0.00000000
#> 52 (Intercept) 14:4 0.0000000 0.000000 0.95 0.00000000
#> 53 (Intercept) 15:1 0.0000000 0.000000 0.95 0.00000000
#> 54 (Intercept) 15:2 0.0000000 0.000000 0.95 0.00000000
#> 55 (Intercept) 15:5 0.0000000 0.000000 0.95 0.00000000
#> 56 (Intercept) 16:1 0.0000000 0.000000 0.95 0.00000000
#> 57 (Intercept) 16:2 0.0000000 0.000000 0.95 0.00000000
#> 58 (Intercept) 16:3 0.0000000 0.000000 0.95 0.00000000
#> 59 (Intercept) 16:5 0.0000000 0.000000 0.95 0.00000000
#> 60 (Intercept) 17:1 0.0000000 0.000000 0.95 0.00000000
#> 61 (Intercept) 17:2 0.0000000 0.000000 0.95 0.00000000
#> 62 (Intercept) 17:4 0.0000000 0.000000 0.95 0.00000000
#> 63 (Intercept) 17:5 0.0000000 0.000000 0.95 0.00000000
#> 64 (Intercept) 18:1 0.0000000 0.000000 0.95 0.00000000
#> 65 (Intercept) 18:2 0.0000000 0.000000 0.95 0.00000000
#> 66 (Intercept) 18:3 0.0000000 0.000000 0.95 0.00000000
#> 67 (Intercept) 18:4 0.0000000 0.000000 0.95 0.00000000
#> 68 (Intercept) 18:5 0.0000000 0.000000 0.95 0.00000000
#> 69 (Intercept) 19:1 0.0000000 0.000000 0.95 0.00000000
#> 70 (Intercept) 19:2 0.0000000 0.000000 0.95 0.00000000
#> 71 (Intercept) 19:3 0.0000000 0.000000 0.95 0.00000000
#> 72 (Intercept) 19:4 0.0000000 0.000000 0.95 0.00000000
#> 73 (Intercept) 20:1 0.0000000 0.000000 0.95 0.00000000
#> 74 (Intercept) 20:3 0.0000000 0.000000 0.95 0.00000000
#> 75 (Intercept) 20:4 0.0000000 0.000000 0.95 0.00000000
#> 76 (Intercept) 20:5 0.0000000 0.000000 0.95 0.00000000
#> 77 (Intercept) 21:1 0.0000000 0.000000 0.95 0.00000000
#> 78 (Intercept) 21:2 0.0000000 0.000000 0.95 0.00000000
#> 79 (Intercept) 21:3 0.0000000 0.000000 0.95 0.00000000
#> 80 (Intercept) 21:4 0.0000000 0.000000 0.95 0.00000000
#> 81 (Intercept) 22:2 0.0000000 0.000000 0.95 0.00000000
#> 82 (Intercept) 22:3 0.0000000 0.000000 0.95 0.00000000
#> 83 (Intercept) 22:4 0.0000000 0.000000 0.95 0.00000000
#> 84 (Intercept) 23:1 0.0000000 0.000000 0.95 0.00000000
#> 85 (Intercept) 23:4 0.0000000 0.000000 0.95 0.00000000
#> 86 (Intercept) 23:5 0.0000000 0.000000 0.95 0.00000000
#> 87 (Intercept) 24:2 0.0000000 0.000000 0.95 0.00000000
#> 88 (Intercept) 24:3 0.0000000 0.000000 0.95 0.00000000
#> 89 (Intercept) 24:4 0.0000000 0.000000 0.95 0.00000000
#> 90 (Intercept) 25:2 0.0000000 0.000000 0.95 0.00000000
#> 91 (Intercept) 25:3 0.0000000 0.000000 0.95 0.00000000
#> 92 (Intercept) 25:4 0.0000000 0.000000 0.95 0.00000000
#> 93 (Intercept) 25:5 0.0000000 0.000000 0.95 0.00000000
#> 94 (Intercept) 26:1 0.0000000 0.000000 0.95 0.00000000
#> 95 (Intercept) 26:2 0.0000000 0.000000 0.95 0.00000000
#> 96 (Intercept) 26:3 0.0000000 0.000000 0.95 0.00000000
#> 97 (Intercept) 26:4 0.0000000 0.000000 0.95 0.00000000
#> 98 (Intercept) 26:5 0.0000000 0.000000 0.95 0.00000000
#> 99 (Intercept) 27:1 0.0000000 0.000000 0.95 0.00000000
#> 100 (Intercept) 27:2 0.0000000 0.000000 0.95 0.00000000
#> 101 (Intercept) 27:4 0.0000000 0.000000 0.95 0.00000000
#> 102 (Intercept) 27:5 0.0000000 0.000000 0.95 0.00000000
#> 103 (Intercept) 28:1 0.0000000 0.000000 0.95 0.00000000
#> 104 (Intercept) 28:3 0.0000000 0.000000 0.95 0.00000000
#> 105 (Intercept) 28:4 0.0000000 0.000000 0.95 0.00000000
#> 106 (Intercept) 29:1 0.0000000 0.000000 0.95 0.00000000
#> 107 (Intercept) 29:3 0.0000000 0.000000 0.95 0.00000000
#> 108 (Intercept) 29:4 0.0000000 0.000000 0.95 0.00000000
#> 109 (Intercept) 30:2 0.0000000 0.000000 0.95 0.00000000
#> 110 (Intercept) 30:5 0.0000000 0.000000 0.95 0.00000000
#> 111 (Intercept) 308 2.2586490 12.070829 0.95 -21.39974083
#> 112 (Intercept) 309 -40.3986460 12.070829 0.95 -64.05703582
#> 113 (Intercept) 310 -38.9602863 12.070829 0.95 -62.61867609
#> 114 (Intercept) 330 23.6904488 12.070829 0.95 0.03205901
#> 115 (Intercept) 331 22.2601693 12.070829 0.95 -1.39822045
#> 116 (Intercept) 332 9.0395213 12.070829 0.95 -14.61886853
#> 117 (Intercept) 333 16.8404251 12.070829 0.95 -6.81796471
#> 118 (Intercept) 334 -7.2325676 12.070829 0.95 -30.89095743
#> 119 (Intercept) 335 -0.3337941 12.070829 0.95 -23.99218384
#> 120 (Intercept) 337 34.8904213 12.070829 0.95 11.23203155
#> 121 (Intercept) 349 -25.2100936 12.070829 0.95 -48.86848342
#> 122 (Intercept) 350 -13.0698931 12.070829 0.95 -36.72828289
#> 123 (Intercept) 351 4.5778065 12.070829 0.95 -19.08058328
#> 124 (Intercept) 352 20.8636198 12.070829 0.95 -2.79476999
#> 125 (Intercept) 369 3.2754602 12.070829 0.95 -20.38292958
#> 126 (Intercept) 370 -25.6128192 12.070829 0.95 -49.27120900
#> 127 (Intercept) 371 0.8070305 12.070829 0.95 -22.85135927
#> 128 (Intercept) 372 12.3145482 12.070829 0.95 -11.34384164
#> 129 Days 308 9.1989554 2.304835 0.95 4.68156229
#> 130 Days 309 -8.6196916 2.304835 0.95 -13.13708477
#> 131 Days 310 -5.4488740 2.304835 0.95 -9.96626711
#> 132 Days 330 -4.8143202 2.304835 0.95 -9.33171332
#> 133 Days 331 -3.0698868 2.304835 0.95 -7.58727992
#> 134 Days 332 -0.2721692 2.304835 0.95 -4.78956240
#> 135 Days 333 -0.2236223 2.304835 0.95 -4.74101548
#> 136 Days 334 1.0745734 2.304835 0.95 -3.44281976
#> 137 Days 335 -10.7521396 2.304835 0.95 -15.26953276
#> 138 Days 337 8.6282718 2.304835 0.95 4.11087867
#> 139 Days 349 1.1734096 2.304835 0.95 -3.34398359
#> 140 Days 350 6.6141917 2.304835 0.95 2.09679851
#> 141 Days 351 -3.0152512 2.304835 0.95 -7.53264440
#> 142 Days 352 3.5360090 2.304835 0.95 -0.98138415
#> 143 Days 369 0.8722153 2.304835 0.95 -3.64517780
#> 144 Days 370 4.8224533 2.304835 0.95 0.30506011
#> 145 Days 371 -0.9881532 2.304835 0.95 -5.50554637
#> 146 Days 372 1.2840287 2.304835 0.95 -3.23336449
#> 147 (Intercept) 1 0.0000000 0.000000 0.95 0.00000000
#> 148 (Intercept) 2 0.0000000 0.000000 0.95 0.00000000
#> 149 (Intercept) 3 0.0000000 0.000000 0.95 0.00000000
#> 150 (Intercept) 4 0.0000000 0.000000 0.95 0.00000000
#> 151 (Intercept) 5 0.0000000 0.000000 0.95 0.00000000
#> 152 SD (Observations) <NA> 25.5918199 NA 0.95 NA
#> 153 SD (Intercept) <NA> 0.0000000 NA 0.95 NA
#> 154 SD (Intercept) <NA> 24.7404800 NA 0.95 NA
#> 155 SD (Intercept) <NA> 0.0000000 NA 0.95 NA
#> 156 SD (Days) <NA> 5.9221133 NA 0.95 NA
#> 157 Rho (Intercept~Days) <NA> 0.2560383 NA 0.95 NA
#> CI_high Effects Group
#> 1 264.7810017 fixed
#> 2 13.4969683 fixed
#> 3 0.0000000 random subgrp:grp
#> 4 0.0000000 random subgrp:grp
#> 5 0.0000000 random subgrp:grp
#> 6 0.0000000 random subgrp:grp
#> 7 0.0000000 random subgrp:grp
#> 8 0.0000000 random subgrp:grp
#> 9 0.0000000 random subgrp:grp
#> 10 0.0000000 random subgrp:grp
#> 11 0.0000000 random subgrp:grp
#> 12 0.0000000 random subgrp:grp
#> 13 0.0000000 random subgrp:grp
#> 14 0.0000000 random subgrp:grp
#> 15 0.0000000 random subgrp:grp
#> 16 0.0000000 random subgrp:grp
#> 17 0.0000000 random subgrp:grp
#> 18 0.0000000 random subgrp:grp
#> 19 0.0000000 random subgrp:grp
#> 20 0.0000000 random subgrp:grp
#> 21 0.0000000 random subgrp:grp
#> 22 0.0000000 random subgrp:grp
#> 23 0.0000000 random subgrp:grp
#> 24 0.0000000 random subgrp:grp
#> 25 0.0000000 random subgrp:grp
#> 26 0.0000000 random subgrp:grp
#> 27 0.0000000 random subgrp:grp
#> 28 0.0000000 random subgrp:grp
#> 29 0.0000000 random subgrp:grp
#> 30 0.0000000 random subgrp:grp
#> 31 0.0000000 random subgrp:grp
#> 32 0.0000000 random subgrp:grp
#> 33 0.0000000 random subgrp:grp
#> 34 0.0000000 random subgrp:grp
#> 35 0.0000000 random subgrp:grp
#> 36 0.0000000 random subgrp:grp
#> 37 0.0000000 random subgrp:grp
#> 38 0.0000000 random subgrp:grp
#> 39 0.0000000 random subgrp:grp
#> 40 0.0000000 random subgrp:grp
#> 41 0.0000000 random subgrp:grp
#> 42 0.0000000 random subgrp:grp
#> 43 0.0000000 random subgrp:grp
#> 44 0.0000000 random subgrp:grp
#> 45 0.0000000 random subgrp:grp
#> 46 0.0000000 random subgrp:grp
#> 47 0.0000000 random subgrp:grp
#> 48 0.0000000 random subgrp:grp
#> 49 0.0000000 random subgrp:grp
#> 50 0.0000000 random subgrp:grp
#> 51 0.0000000 random subgrp:grp
#> 52 0.0000000 random subgrp:grp
#> 53 0.0000000 random subgrp:grp
#> 54 0.0000000 random subgrp:grp
#> 55 0.0000000 random subgrp:grp
#> 56 0.0000000 random subgrp:grp
#> 57 0.0000000 random subgrp:grp
#> 58 0.0000000 random subgrp:grp
#> 59 0.0000000 random subgrp:grp
#> 60 0.0000000 random subgrp:grp
#> 61 0.0000000 random subgrp:grp
#> 62 0.0000000 random subgrp:grp
#> 63 0.0000000 random subgrp:grp
#> 64 0.0000000 random subgrp:grp
#> 65 0.0000000 random subgrp:grp
#> 66 0.0000000 random subgrp:grp
#> 67 0.0000000 random subgrp:grp
#> 68 0.0000000 random subgrp:grp
#> 69 0.0000000 random subgrp:grp
#> 70 0.0000000 random subgrp:grp
#> 71 0.0000000 random subgrp:grp
#> 72 0.0000000 random subgrp:grp
#> 73 0.0000000 random subgrp:grp
#> 74 0.0000000 random subgrp:grp
#> 75 0.0000000 random subgrp:grp
#> 76 0.0000000 random subgrp:grp
#> 77 0.0000000 random subgrp:grp
#> 78 0.0000000 random subgrp:grp
#> 79 0.0000000 random subgrp:grp
#> 80 0.0000000 random subgrp:grp
#> 81 0.0000000 random subgrp:grp
#> 82 0.0000000 random subgrp:grp
#> 83 0.0000000 random subgrp:grp
#> 84 0.0000000 random subgrp:grp
#> 85 0.0000000 random subgrp:grp
#> 86 0.0000000 random subgrp:grp
#> 87 0.0000000 random subgrp:grp
#> 88 0.0000000 random subgrp:grp
#> 89 0.0000000 random subgrp:grp
#> 90 0.0000000 random subgrp:grp
#> 91 0.0000000 random subgrp:grp
#> 92 0.0000000 random subgrp:grp
#> 93 0.0000000 random subgrp:grp
#> 94 0.0000000 random subgrp:grp
#> 95 0.0000000 random subgrp:grp
#> 96 0.0000000 random subgrp:grp
#> 97 0.0000000 random subgrp:grp
#> 98 0.0000000 random subgrp:grp
#> 99 0.0000000 random subgrp:grp
#> 100 0.0000000 random subgrp:grp
#> 101 0.0000000 random subgrp:grp
#> 102 0.0000000 random subgrp:grp
#> 103 0.0000000 random subgrp:grp
#> 104 0.0000000 random subgrp:grp
#> 105 0.0000000 random subgrp:grp
#> 106 0.0000000 random subgrp:grp
#> 107 0.0000000 random subgrp:grp
#> 108 0.0000000 random subgrp:grp
#> 109 0.0000000 random subgrp:grp
#> 110 0.0000000 random subgrp:grp
#> 111 25.9170388 random Subject
#> 112 -16.7402562 random Subject
#> 113 -15.3018965 random Subject
#> 114 47.3488386 random Subject
#> 115 45.9185591 random Subject
#> 116 32.6979110 random Subject
#> 117 40.4988149 random Subject
#> 118 16.4258221 random Subject
#> 119 23.3245957 random Subject
#> 120 58.5488111 random Subject
#> 121 -1.5517038 random Subject
#> 122 10.5884967 random Subject
#> 123 28.2361963 random Subject
#> 124 44.5220096 random Subject
#> 125 26.9338500 random Subject
#> 126 -1.9544294 random Subject
#> 127 24.4654203 random Subject
#> 128 35.9729379 random Subject
#> 129 13.7163486 random Subject
#> 130 -4.1022985 random Subject
#> 131 -0.9314808 random Subject
#> 132 -0.2969270 random Subject
#> 133 1.4475064 random Subject
#> 134 4.2452239 random Subject
#> 135 4.2937708 random Subject
#> 136 5.5919665 random Subject
#> 137 -6.2347465 random Subject
#> 138 13.1456650 random Subject
#> 139 5.6908027 random Subject
#> 140 11.1315848 random Subject
#> 141 1.5021419 random Subject
#> 142 8.0534022 random Subject
#> 143 5.3896085 random Subject
#> 144 9.3398464 random Subject
#> 145 3.5292399 random Subject
#> 146 5.8014218 random Subject
#> 147 0.0000000 random grp
#> 148 0.0000000 random grp
#> 149 0.0000000 random grp
#> 150 0.0000000 random grp
#> 151 0.0000000 random grp
#> 152 NA random_variances Residual
#> 153 NA random_variances subgrp:grp
#> 154 NA random_variances Subject
#> 155 NA random_variances grp
#> 156 NA random_variances Subject
#> 157 NA random_variances Subject
Created on 2021-03-04 by the reprex package (v1.0.0)
library(lme4)
#> Loading required package: Matrix
library(parameters)
data(sleepstudy)
model <- lmer(
Reaction ~ Days + (1 + Days | Subject),
data = sleepstudy
)
model_parameters(model)
#> Parameter | Coefficient | SE | 95% CI | t(174) | p
#> ---------------------------------------------------------------------
#> (Intercept) | 251.41 | 6.82 | [238.03, 264.78] | 36.84 | < .001
#> Days | 10.47 | 1.55 | [ 7.44, 13.50] | 6.77 | < .001
model_parameters(model, effects = "random")
#> Parameter | Level | Coefficient | SE | 95% CI
#> ------------------------------------------------------------
#> (Intercept) | 308 | 2.26 | 12.07 | [-21.40, 25.92]
#> (Intercept) | 309 | -40.40 | 12.07 | [-64.06, -16.74]
#> (Intercept) | 310 | -38.96 | 12.07 | [-62.62, -15.30]
#> (Intercept) | 330 | 23.69 | 12.07 | [ 0.03, 47.35]
#> (Intercept) | 331 | 22.26 | 12.07 | [ -1.40, 45.92]
#> (Intercept) | 332 | 9.04 | 12.07 | [-14.62, 32.70]
#> (Intercept) | 333 | 16.84 | 12.07 | [ -6.82, 40.50]
#> (Intercept) | 334 | -7.23 | 12.07 | [-30.89, 16.43]
#> (Intercept) | 335 | -0.33 | 12.07 | [-23.99, 23.32]
#> (Intercept) | 337 | 34.89 | 12.07 | [ 11.23, 58.55]
#> (Intercept) | 349 | -25.21 | 12.07 | [-48.87, -1.55]
#> (Intercept) | 350 | -13.07 | 12.07 | [-36.73, 10.59]
#> (Intercept) | 351 | 4.58 | 12.07 | [-19.08, 28.24]
#> (Intercept) | 352 | 20.86 | 12.07 | [ -2.79, 44.52]
#> (Intercept) | 369 | 3.28 | 12.07 | [-20.38, 26.93]
#> (Intercept) | 370 | -25.61 | 12.07 | [-49.27, -1.95]
#> (Intercept) | 371 | 0.81 | 12.07 | [-22.85, 24.47]
#> (Intercept) | 372 | 12.31 | 12.07 | [-11.34, 35.97]
#> Days | 308 | 9.20 | 2.30 | [ 4.68, 13.72]
#> Days | 309 | -8.62 | 2.30 | [-13.14, -4.10]
#> Days | 310 | -5.45 | 2.30 | [ -9.97, -0.93]
#> Days | 330 | -4.81 | 2.30 | [ -9.33, -0.30]
#> Days | 331 | -3.07 | 2.30 | [ -7.59, 1.45]
#> Days | 332 | -0.27 | 2.30 | [ -4.79, 4.25]
#> Days | 333 | -0.22 | 2.30 | [ -4.74, 4.29]
#> Days | 334 | 1.07 | 2.30 | [ -3.44, 5.59]
#> Days | 335 | -10.75 | 2.30 | [-15.27, -6.23]
#> Days | 337 | 8.63 | 2.30 | [ 4.11, 13.15]
#> Days | 349 | 1.17 | 2.30 | [ -3.34, 5.69]
#> Days | 350 | 6.61 | 2.30 | [ 2.10, 11.13]
#> Days | 351 | -3.02 | 2.30 | [ -7.53, 1.50]
#> Days | 352 | 3.54 | 2.30 | [ -0.98, 8.05]
#> Days | 369 | 0.87 | 2.30 | [ -3.65, 5.39]
#> Days | 370 | 4.82 | 2.30 | [ 0.31, 9.34]
#> Days | 371 | -0.99 | 2.30 | [ -5.51, 3.53]
#> Days | 372 | 1.28 | 2.30 | [ -3.23, 5.80]
model_parameters(model, effects = "random_variance")
#> # Residual
#>
#> Parameter | Coefficient | CI
#> --------------------------------------
#> SD (Observations) | 25.59 | 0.95
#>
#> # Subject
#>
#> Parameter | Coefficient | CI
#> -----------------------------------------
#> SD (Intercept) | 24.74 | 0.95
#> SD (Days) | 5.92 | 0.95
#> Rho (Intercept~Days) | 0.26 | 0.95
model_parameters(model, effects = "all")
#> # Fixed Effects
#>
#> Parameter | Coefficient | SE | 95% CI
#> ---------------------------------------------------
#> (Intercept) | 251.41 | 6.82 | [238.03, 264.78]
#> Days | 10.47 | 1.55 | [ 7.44, 13.50]
#>
#> # Random Effects: Subject
#>
#> Parameter | Coefficient | SE | 95% CI
#> ----------------------------------------------------------
#> (Intercept) [308] | 2.26 | 12.07 | [-21.40, 25.92]
#> (Intercept) [309] | -40.40 | 12.07 | [-64.06, -16.74]
#> (Intercept) [310] | -38.96 | 12.07 | [-62.62, -15.30]
#> (Intercept) [330] | 23.69 | 12.07 | [ 0.03, 47.35]
#> (Intercept) [331] | 22.26 | 12.07 | [ -1.40, 45.92]
#> (Intercept) [332] | 9.04 | 12.07 | [-14.62, 32.70]
#> (Intercept) [333] | 16.84 | 12.07 | [ -6.82, 40.50]
#> (Intercept) [334] | -7.23 | 12.07 | [-30.89, 16.43]
#> (Intercept) [335] | -0.33 | 12.07 | [-23.99, 23.32]
#> (Intercept) [337] | 34.89 | 12.07 | [ 11.23, 58.55]
#> (Intercept) [349] | -25.21 | 12.07 | [-48.87, -1.55]
#> (Intercept) [350] | -13.07 | 12.07 | [-36.73, 10.59]
#> (Intercept) [351] | 4.58 | 12.07 | [-19.08, 28.24]
#> (Intercept) [352] | 20.86 | 12.07 | [ -2.79, 44.52]
#> (Intercept) [369] | 3.28 | 12.07 | [-20.38, 26.93]
#> (Intercept) [370] | -25.61 | 12.07 | [-49.27, -1.95]
#> (Intercept) [371] | 0.81 | 12.07 | [-22.85, 24.47]
#> (Intercept) [372] | 12.31 | 12.07 | [-11.34, 35.97]
#> Days [308] | 9.20 | 2.30 | [ 4.68, 13.72]
#> Days [309] | -8.62 | 2.30 | [-13.14, -4.10]
#> Days [310] | -5.45 | 2.30 | [ -9.97, -0.93]
#> Days [330] | -4.81 | 2.30 | [ -9.33, -0.30]
#> Days [331] | -3.07 | 2.30 | [ -7.59, 1.45]
#> Days [332] | -0.27 | 2.30 | [ -4.79, 4.25]
#> Days [333] | -0.22 | 2.30 | [ -4.74, 4.29]
#> Days [334] | 1.07 | 2.30 | [ -3.44, 5.59]
#> Days [335] | -10.75 | 2.30 | [-15.27, -6.23]
#> Days [337] | 8.63 | 2.30 | [ 4.11, 13.15]
#> Days [349] | 1.17 | 2.30 | [ -3.34, 5.69]
#> Days [350] | 6.61 | 2.30 | [ 2.10, 11.13]
#> Days [351] | -3.02 | 2.30 | [ -7.53, 1.50]
#> Days [352] | 3.54 | 2.30 | [ -0.98, 8.05]
#> Days [369] | 0.87 | 2.30 | [ -3.65, 5.39]
#> Days [370] | 4.82 | 2.30 | [ 0.31, 9.34]
#> Days [371] | -0.99 | 2.30 | [ -5.51, 3.53]
#> Days [372] | 1.28 | 2.30 | [ -3.23, 5.80]
#>
#> # Random Effects Variances: Subject
#>
#> Parameter | Coefficient | CI
#> -----------------------------------------
#> SD (Intercept) | 24.74 | 0.95
#> SD (Days) | 5.92 | 0.95
#> Rho (Intercept~Days) | 0.26 | 0.95
#>
#> # Random Effects Variances: Residual
#>
#> Parameter | Coefficient | CI
#> --------------------------------------
#> SD (Observations) | 25.59 | 0.95
as.data.frame(model_parameters(model))
#> Parameter Coefficient SE CI CI_low CI_high t df_error
#> 1 (Intercept) 251.40510 6.824597 0.95 238.029141 264.78107 36.838090 174
#> 2 Days 10.46729 1.545790 0.95 7.437594 13.49698 6.771481 174
#> p
#> 1 4.537104e-297
#> 2 1.274703e-11
as.data.frame(model_parameters(model, effects = "random"))
#> Parameter Level Coefficient SE CI CI_low CI_high
#> 1 (Intercept) 308 2.2585509 12.070857 0.95 -21.39989394 25.9169958
#> 2 (Intercept) 309 -40.3987381 12.070857 0.95 -64.05718296 -16.7402932
#> 3 (Intercept) 310 -38.9604090 12.070857 0.95 -62.61885384 -15.3019641
#> 4 (Intercept) 330 23.6906196 12.070857 0.95 0.03217468 47.3490645
#> 5 (Intercept) 331 22.2603126 12.070857 0.95 -1.39813230 45.9187575
#> 6 (Intercept) 332 9.0395679 12.070857 0.95 -14.61887699 32.6980128
#> 7 (Intercept) 333 16.8405086 12.070857 0.95 -6.81793627 40.4989535
#> 8 (Intercept) 334 -7.2326151 12.070857 0.95 -30.89105998 16.4258298
#> 9 (Intercept) 335 -0.3336684 12.070857 0.95 -23.99211330 23.3247765
#> 10 (Intercept) 337 34.8904868 12.070857 0.95 11.23204194 58.5489317
#> 11 (Intercept) 349 -25.2102286 12.070857 0.95 -48.86867349 -1.5517837
#> 12 (Intercept) 350 -13.0700342 12.070857 0.95 -36.72847904 10.5884107
#> 13 (Intercept) 351 4.5778642 12.070857 0.95 -19.08058071 28.2363091
#> 14 (Intercept) 352 20.8636782 12.070857 0.95 -2.79476671 44.5221231
#> 15 (Intercept) 369 3.2754656 12.070857 0.95 -20.38297926 26.9339105
#> 16 (Intercept) 370 -25.6129993 12.070857 0.95 -49.27144419 -1.9545544
#> 17 (Intercept) 371 0.8070461 12.070857 0.95 -22.85139880 24.4654910
#> 18 (Intercept) 372 12.3145921 12.070857 0.95 -11.34385278 35.9730370
#> 19 Days 308 9.1989758 2.304839 0.95 4.68157429 13.7163772
#> 20 Days 309 -8.6196806 2.304839 0.95 -13.13708209 -4.1022791
#> 21 Days 310 -5.4488565 2.304839 0.95 -9.96625794 -0.9314550
#> 22 Days 330 -4.8143503 2.304839 0.95 -9.33175179 -0.2969488
#> 23 Days 331 -3.0699116 2.304839 0.95 -7.58731308 1.4474899
#> 24 Days 332 -0.2721770 2.304839 0.95 -4.78957847 4.2452245
#> 25 Days 333 -0.2236361 2.304839 0.95 -4.74103755 4.2937654
#> 26 Days 334 1.0745816 2.304839 0.95 -3.44281982 5.5919831
#> 27 Days 335 -10.7521652 2.304839 0.95 -15.26956665 -6.2347637
#> 28 Days 337 8.6282652 2.304839 0.95 4.11086369 13.1456666
#> 29 Days 349 1.1734322 2.304839 0.95 -3.34396930 5.6908336
#> 30 Days 350 6.6142178 2.304839 0.95 2.09681634 11.1316193
#> 31 Days 351 -3.0152621 2.304839 0.95 -7.53266355 1.5021394
#> 32 Days 352 3.5360011 2.304839 0.95 -0.98140035 8.0534026
#> 33 Days 369 0.8722149 2.304839 0.95 -3.64518660 5.3896163
#> 34 Days 370 4.8224850 2.304839 0.95 0.30508348 9.3398864
#> 35 Days 371 -0.9881562 2.304839 0.95 -5.50555769 3.5292452
#> 36 Days 372 1.2840221 2.304839 0.95 -3.23337939 5.8014235
#> Effects Group
#> 1 random Subject
#> 2 random Subject
#> 3 random Subject
#> 4 random Subject
#> 5 random Subject
#> 6 random Subject
#> 7 random Subject
#> 8 random Subject
#> 9 random Subject
#> 10 random Subject
#> 11 random Subject
#> 12 random Subject
#> 13 random Subject
#> 14 random Subject
#> 15 random Subject
#> 16 random Subject
#> 17 random Subject
#> 18 random Subject
#> 19 random Subject
#> 20 random Subject
#> 21 random Subject
#> 22 random Subject
#> 23 random Subject
#> 24 random Subject
#> 25 random Subject
#> 26 random Subject
#> 27 random Subject
#> 28 random Subject
#> 29 random Subject
#> 30 random Subject
#> 31 random Subject
#> 32 random Subject
#> 33 random Subject
#> 34 random Subject
#> 35 random Subject
#> 36 random Subject
as.data.frame(model_parameters(model, effects = "random_variance"))
#> Parameter Level Coefficient SE CI CI_low CI_high
#> 1 SD (Observations) NA 25.5917957 NA 0.95 NA NA
#> 2 SD (Intercept) NA 24.7406580 NA 0.95 NA NA
#> 3 SD (Days) NA 5.9221377 NA 0.95 NA NA
#> 4 Rho (Intercept~Days) NA 0.2560298 NA 0.95 NA NA
#> Effects Group
#> 1 random_variances Residual
#> 2 random_variances Subject
#> 3 random_variances Subject
#> 4 random_variances Subject
as.data.frame(model_parameters(model, effects = "all"))
#> Parameter Level Coefficient SE CI CI_low
#> 1 (Intercept) <NA> 251.4051048 6.824597 0.95 238.02914112
#> 2 Days <NA> 10.4672860 1.545790 0.95 7.43759393
#> 3 (Intercept) 308 2.2585509 12.070857 0.95 -21.39989394
#> 4 (Intercept) 309 -40.3987381 12.070857 0.95 -64.05718296
#> 5 (Intercept) 310 -38.9604090 12.070857 0.95 -62.61885384
#> 6 (Intercept) 330 23.6906196 12.070857 0.95 0.03217468
#> 7 (Intercept) 331 22.2603126 12.070857 0.95 -1.39813230
#> 8 (Intercept) 332 9.0395679 12.070857 0.95 -14.61887699
#> 9 (Intercept) 333 16.8405086 12.070857 0.95 -6.81793627
#> 10 (Intercept) 334 -7.2326151 12.070857 0.95 -30.89105998
#> 11 (Intercept) 335 -0.3336684 12.070857 0.95 -23.99211330
#> 12 (Intercept) 337 34.8904868 12.070857 0.95 11.23204194
#> 13 (Intercept) 349 -25.2102286 12.070857 0.95 -48.86867349
#> 14 (Intercept) 350 -13.0700342 12.070857 0.95 -36.72847904
#> 15 (Intercept) 351 4.5778642 12.070857 0.95 -19.08058071
#> 16 (Intercept) 352 20.8636782 12.070857 0.95 -2.79476671
#> 17 (Intercept) 369 3.2754656 12.070857 0.95 -20.38297926
#> 18 (Intercept) 370 -25.6129993 12.070857 0.95 -49.27144419
#> 19 (Intercept) 371 0.8070461 12.070857 0.95 -22.85139880
#> 20 (Intercept) 372 12.3145921 12.070857 0.95 -11.34385278
#> 21 Days 308 9.1989758 2.304839 0.95 4.68157429
#> 22 Days 309 -8.6196806 2.304839 0.95 -13.13708209
#> 23 Days 310 -5.4488565 2.304839 0.95 -9.96625794
#> 24 Days 330 -4.8143503 2.304839 0.95 -9.33175179
#> 25 Days 331 -3.0699116 2.304839 0.95 -7.58731308
#> 26 Days 332 -0.2721770 2.304839 0.95 -4.78957847
#> 27 Days 333 -0.2236361 2.304839 0.95 -4.74103755
#> 28 Days 334 1.0745816 2.304839 0.95 -3.44281982
#> 29 Days 335 -10.7521652 2.304839 0.95 -15.26956665
#> 30 Days 337 8.6282652 2.304839 0.95 4.11086369
#> 31 Days 349 1.1734322 2.304839 0.95 -3.34396930
#> 32 Days 350 6.6142178 2.304839 0.95 2.09681634
#> 33 Days 351 -3.0152621 2.304839 0.95 -7.53266355
#> 34 Days 352 3.5360011 2.304839 0.95 -0.98140035
#> 35 Days 369 0.8722149 2.304839 0.95 -3.64518660
#> 36 Days 370 4.8224850 2.304839 0.95 0.30508348
#> 37 Days 371 -0.9881562 2.304839 0.95 -5.50555769
#> 38 Days 372 1.2840221 2.304839 0.95 -3.23337939
#> 39 SD (Observations) <NA> 25.5917957 NA 0.95 NA
#> 40 SD (Intercept) <NA> 24.7406580 NA 0.95 NA
#> 41 SD (Days) <NA> 5.9221377 NA 0.95 NA
#> 42 Rho (Intercept~Days) <NA> 0.2560298 NA 0.95 NA
#> CI_high Effects Group
#> 1 264.7810686 fixed
#> 2 13.4969780 fixed
#> 3 25.9169958 random Subject
#> 4 -16.7402932 random Subject
#> 5 -15.3019641 random Subject
#> 6 47.3490645 random Subject
#> 7 45.9187575 random Subject
#> 8 32.6980128 random Subject
#> 9 40.4989535 random Subject
#> 10 16.4258298 random Subject
#> 11 23.3247765 random Subject
#> 12 58.5489317 random Subject
#> 13 -1.5517837 random Subject
#> 14 10.5884107 random Subject
#> 15 28.2363091 random Subject
#> 16 44.5221231 random Subject
#> 17 26.9339105 random Subject
#> 18 -1.9545544 random Subject
#> 19 24.4654910 random Subject
#> 20 35.9730370 random Subject
#> 21 13.7163772 random Subject
#> 22 -4.1022791 random Subject
#> 23 -0.9314550 random Subject
#> 24 -0.2969488 random Subject
#> 25 1.4474899 random Subject
#> 26 4.2452245 random Subject
#> 27 4.2937654 random Subject
#> 28 5.5919831 random Subject
#> 29 -6.2347637 random Subject
#> 30 13.1456666 random Subject
#> 31 5.6908336 random Subject
#> 32 11.1316193 random Subject
#> 33 1.5021394 random Subject
#> 34 8.0534026 random Subject
#> 35 5.3896163 random Subject
#> 36 9.3398864 random Subject
#> 37 3.5292452 random Subject
#> 38 5.8014235 random Subject
#> 39 NA random_variances Residual
#> 40 NA random_variances Subject
#> 41 NA random_variances Subject
#> 42 NA random_variances Subject
Created on 2021-03-04 by the reprex package (v1.0.0)
You can look at the above two hidden comments for show case. But I wonder if we really need an "effects" column when showing fixed effects? What else should that be?
Thanks! The examples look terrific.
What else should that be?
I share your misgivings, but, for better or for worse, a lot of users are just going to expect such a column in light of prior experience with broom.mixed
. Plus, we don't have much to lose by being explicit about this.
Btw, this is what I see if I try to combine the rows into a dataframe:
library(lme4)
#> Loading required package: Matrix
library(parameters)
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
as.data.frame(model_parameters(fm1, effects = "all"))
#> Error in rbind(deparse.level, ...): numbers of columns of arguments do not match
Created on 2021-03-04 by the reprex package (v1.0.0)
probably a temporary issue, please check again now.
Thanks, Daniel. Works great now!
Btw, do you know why there are extra ""
s in Group
column when converted to a tibble
?
library(lme4)
#> Loading required package: Matrix
library(parameters)
options(tibble.width = Inf)
mod <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
df <- model_parameters(mod, effects = "all_pars")
tibble::as_tibble(df)
#> # A tibble: 6 x 12
#> Parameter Level Coefficient SE CI CI_low CI_high t
#> <chr> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) NA 251. 6.82 0.95 238. 265. 36.8
#> 2 Days NA 10.5 1.55 0.95 7.44 13.5 6.77
#> 3 SD (Observations) NA 25.6 NA 0.95 NA NA NA
#> 4 SD (Intercept) NA 24.7 NA 0.95 NA NA NA
#> 5 SD (Days) NA 5.92 NA 0.95 NA NA NA
#> 6 Cor (Intercept~Days) NA 0.256 NA 0.95 NA NA NA
#> df_error p Effects Group
#> <int> <dbl> <chr> <chr>
#> 1 174 4.54e-297 fixed ""
#> 2 174 1.27e- 11 fixed ""
#> 3 NA NA random_variances "Residual"
#> 4 NA NA random_variances "Subject"
#> 5 NA NA random_variances "Subject"
#> 6 NA NA random_variances "Subject"
Created on 2021-03-05 by the reprex package (v1.0.0)
Not sure. Will look at it. Btw, I completely revised the way to display random parameters, being in line with the behaviour of Bayesian models. You now have the group_level
argument.
library(lme4)
#> Loading required package: Matrix
library(parameters)
library(glmmTMB)
data("fish")
data("sleepstudy")
m1 <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
model_parameters(m1)
#> Parameter | Coefficient | SE | 95% CI | t(174) | p
#> ---------------------------------------------------------------------
#> (Intercept) | 251.41 | 6.82 | [238.03, 264.78] | 36.84 | < .001
#> Days | 10.47 | 1.55 | [ 7.44, 13.50] | 6.77 | < .001
model_parameters(m1, effects = "random", group_level = TRUE)
#> Parameter | Coefficient | SE | 95% CI
#> -------------------------------------------------------------------
#> Subject: (Intercept) [308] | 2.26 | 12.07 | [-21.40, 25.92]
#> Subject: (Intercept) [309] | -40.40 | 12.07 | [-64.06, -16.74]
#> Subject: (Intercept) [310] | -38.96 | 12.07 | [-62.62, -15.30]
#> Subject: (Intercept) [330] | 23.69 | 12.07 | [ 0.03, 47.35]
#> Subject: (Intercept) [331] | 22.26 | 12.07 | [ -1.40, 45.92]
#> Subject: (Intercept) [332] | 9.04 | 12.07 | [-14.62, 32.70]
#> Subject: (Intercept) [333] | 16.84 | 12.07 | [ -6.82, 40.50]
#> Subject: (Intercept) [334] | -7.23 | 12.07 | [-30.89, 16.43]
#> Subject: (Intercept) [335] | -0.33 | 12.07 | [-23.99, 23.32]
#> Subject: (Intercept) [337] | 34.89 | 12.07 | [ 11.23, 58.55]
#> Subject: (Intercept) [349] | -25.21 | 12.07 | [-48.87, -1.55]
#> Subject: (Intercept) [350] | -13.07 | 12.07 | [-36.73, 10.59]
#> Subject: (Intercept) [351] | 4.58 | 12.07 | [-19.08, 28.24]
#> Subject: (Intercept) [352] | 20.86 | 12.07 | [ -2.79, 44.52]
#> Subject: (Intercept) [369] | 3.28 | 12.07 | [-20.38, 26.93]
#> Subject: (Intercept) [370] | -25.61 | 12.07 | [-49.27, -1.95]
#> Subject: (Intercept) [371] | 0.81 | 12.07 | [-22.85, 24.47]
#> Subject: (Intercept) [372] | 12.31 | 12.07 | [-11.34, 35.97]
#> Subject: Days [308] | 9.20 | 2.30 | [ 4.68, 13.72]
#> Subject: Days [309] | -8.62 | 2.30 | [-13.14, -4.10]
#> Subject: Days [310] | -5.45 | 2.30 | [ -9.97, -0.93]
#> Subject: Days [330] | -4.81 | 2.30 | [ -9.33, -0.30]
#> Subject: Days [331] | -3.07 | 2.30 | [ -7.59, 1.45]
#> Subject: Days [332] | -0.27 | 2.30 | [ -4.79, 4.25]
#> Subject: Days [333] | -0.22 | 2.30 | [ -4.74, 4.29]
#> Subject: Days [334] | 1.07 | 2.30 | [ -3.44, 5.59]
#> Subject: Days [335] | -10.75 | 2.30 | [-15.27, -6.23]
#> Subject: Days [337] | 8.63 | 2.30 | [ 4.11, 13.15]
#> Subject: Days [349] | 1.17 | 2.30 | [ -3.34, 5.69]
#> Subject: Days [350] | 6.61 | 2.30 | [ 2.10, 11.13]
#> Subject: Days [351] | -3.02 | 2.30 | [ -7.53, 1.50]
#> Subject: Days [352] | 3.54 | 2.30 | [ -0.98, 8.05]
#> Subject: Days [369] | 0.87 | 2.30 | [ -3.65, 5.39]
#> Subject: Days [370] | 4.82 | 2.30 | [ 0.31, 9.34]
#> Subject: Days [371] | -0.99 | 2.30 | [ -5.51, 3.53]
#> Subject: Days [372] | 1.28 | 2.30 | [ -3.23, 5.80]
model_parameters(m1, effects = "random")
#> Parameter | Coefficient
#> --------------------------------------------
#> Residual: SD (Observations) | 25.59
#> Subject: SD (Intercept) | 24.74
#> Subject: SD (Days) | 5.92
#> Subject: Cor (Intercept~Days) | 0.26
model_parameters(m1, effects = "all")
#> # Fixed Effects
#>
#> Parameter | Coefficient | SE | 95% CI | t(174) | p
#> ---------------------------------------------------------------------
#> (Intercept) | 251.41 | 6.82 | [238.03, 264.78] | 36.84 | < .001
#> Days | 10.47 | 1.55 | [ 7.44, 13.50] | 6.77 | < .001
#>
#> # Random Effects
#>
#> Parameter | Coefficient
#> --------------------------------------------
#> Residual: SD (Observations) | 25.59
#> Subject: SD (Intercept) | 24.74
#> Subject: SD (Days) | 5.92
#> Subject: Cor (Intercept~Days) | 0.26
model_parameters(m1, effects = "all", group_level = TRUE)
#> # Fixed Effects
#>
#> Parameter | Coefficient | SE | 95% CI | t(174) | p
#> ---------------------------------------------------------------------
#> (Intercept) | 251.41 | 6.82 | [238.03, 264.78] | 36.84 | < .001
#> Days | 10.47 | 1.55 | [ 7.44, 13.50] | 6.77 | < .001
#>
#> # Random Effects: Subject
#>
#> Parameter | Coefficient | SE | 95% CI
#> ----------------------------------------------------------
#> (Intercept) [308] | 2.26 | 12.07 | [-21.40, 25.92]
#> (Intercept) [309] | -40.40 | 12.07 | [-64.06, -16.74]
#> (Intercept) [310] | -38.96 | 12.07 | [-62.62, -15.30]
#> (Intercept) [330] | 23.69 | 12.07 | [ 0.03, 47.35]
#> (Intercept) [331] | 22.26 | 12.07 | [ -1.40, 45.92]
#> (Intercept) [332] | 9.04 | 12.07 | [-14.62, 32.70]
#> (Intercept) [333] | 16.84 | 12.07 | [ -6.82, 40.50]
#> (Intercept) [334] | -7.23 | 12.07 | [-30.89, 16.43]
#> (Intercept) [335] | -0.33 | 12.07 | [-23.99, 23.32]
#> (Intercept) [337] | 34.89 | 12.07 | [ 11.23, 58.55]
#> (Intercept) [349] | -25.21 | 12.07 | [-48.87, -1.55]
#> (Intercept) [350] | -13.07 | 12.07 | [-36.73, 10.59]
#> (Intercept) [351] | 4.58 | 12.07 | [-19.08, 28.24]
#> (Intercept) [352] | 20.86 | 12.07 | [ -2.79, 44.52]
#> (Intercept) [369] | 3.28 | 12.07 | [-20.38, 26.93]
#> (Intercept) [370] | -25.61 | 12.07 | [-49.27, -1.95]
#> (Intercept) [371] | 0.81 | 12.07 | [-22.85, 24.47]
#> (Intercept) [372] | 12.31 | 12.07 | [-11.34, 35.97]
#> Days [308] | 9.20 | 2.30 | [ 4.68, 13.72]
#> Days [309] | -8.62 | 2.30 | [-13.14, -4.10]
#> Days [310] | -5.45 | 2.30 | [ -9.97, -0.93]
#> Days [330] | -4.81 | 2.30 | [ -9.33, -0.30]
#> Days [331] | -3.07 | 2.30 | [ -7.59, 1.45]
#> Days [332] | -0.27 | 2.30 | [ -4.79, 4.25]
#> Days [333] | -0.22 | 2.30 | [ -4.74, 4.29]
#> Days [334] | 1.07 | 2.30 | [ -3.44, 5.59]
#> Days [335] | -10.75 | 2.30 | [-15.27, -6.23]
#> Days [337] | 8.63 | 2.30 | [ 4.11, 13.15]
#> Days [349] | 1.17 | 2.30 | [ -3.34, 5.69]
#> Days [350] | 6.61 | 2.30 | [ 2.10, 11.13]
#> Days [351] | -3.02 | 2.30 | [ -7.53, 1.50]
#> Days [352] | 3.54 | 2.30 | [ -0.98, 8.05]
#> Days [369] | 0.87 | 2.30 | [ -3.65, 5.39]
#> Days [370] | 4.82 | 2.30 | [ 0.31, 9.34]
#> Days [371] | -0.99 | 2.30 | [ -5.51, 3.53]
#> Days [372] | 1.28 | 2.30 | [ -3.23, 5.80]
m1 <- glmmTMB(
count ~ child + camper + (1 | persons),
ziformula = ~ child + camper + (1 | persons),
data = fish,
family = truncated_poisson()
)
#> Warning in Matrix::sparseMatrix(dims = c(0, 0), i = integer(0), j =
#> integer(0), : 'giveCsparse' has been deprecated; setting 'repr = "T"' for you
#> Warning in Matrix::sparseMatrix(dims = c(0, 0), i = integer(0), j =
#> integer(0), : 'giveCsparse' has been deprecated; setting 'repr = "T"' for you
#> Warning in Matrix::sparseMatrix(dims = c(0, 0), i = integer(0), j =
#> integer(0), : 'giveCsparse' has been deprecated; setting 'repr = "T"' for you
model_parameters(m1)
#> # Fixed Effects
#>
#> Parameter | Log-Mean | SE | 95% CI | z | p
#> ----------------------------------------------------------------
#> (Intercept) | 1.26 | 0.48 | [ 0.33, 2.19] | 2.66 | 0.008
#> child | -1.14 | 0.09 | [-1.32, -0.96] | -12.27 | < .001
#> camper [1] | 0.73 | 0.09 | [ 0.55, 0.92] | 7.85 | < .001
#>
#> # Zero-Inflated
#>
#> Parameter | Log-Odds | SE | 95% CI | z | p
#> ---------------------------------------------------------------
#> (Intercept) | -0.39 | 0.65 | [-1.67, 0.89] | -0.60 | 0.551
#> child | 2.05 | 0.31 | [ 1.45, 2.66] | 6.63 | < .001
#> camper [1] | -1.01 | 0.32 | [-1.64, -0.37] | -3.12 | 0.002
model_parameters(m1, effects = "random", group_level = TRUE)
#> # Fixed Effects (persons)
#>
#> Parameter | Log-Mean | SE | 95% CI
#> --------------------------------------------------
#> (Intercept) [1] | -1.24 | 0.49 | [-2.20, -0.28]
#> (Intercept) [2] | -0.35 | 0.48 | [-1.28, 0.59]
#> (Intercept) [3] | 0.36 | 0.47 | [-0.56, 1.29]
#> (Intercept) [4] | 1.26 | 0.47 | [ 0.33, 2.18]
#>
#> # Zero-Inflated (persons)
#>
#> Parameter | Log-Odds | SE | 95% CI
#> --------------------------------------------------
#> (Intercept) [1] | 1.57 | 0.67 | [ 0.26, 2.89]
#> (Intercept) [2] | 0.30 | 0.64 | [-0.95, 1.55]
#> (Intercept) [3] | -0.32 | 0.65 | [-1.59, 0.96]
#> (Intercept) [4] | -1.57 | 0.69 | [-2.91, -0.22]
model_parameters(m1, effects = "random")
#> Parameter | Log-Mean
#> --------------------------------------
#> Residual: SD (Observations) | 0.16
#> persons: SD (Intercept) | 0.93
model_parameters(m1, effects = "all")
#> # Fixed Effects (Count Model)
#>
#> Parameter | Log-Mean | SE | 95% CI | z | p
#> ----------------------------------------------------------------
#> (Intercept) | 1.26 | 0.48 | [ 0.33, 2.19] | 2.66 | 0.008
#> child | -1.14 | 0.09 | [-1.32, -0.96] | -12.27 | < .001
#> camper [1] | 0.73 | 0.09 | [ 0.55, 0.92] | 7.85 | < .001
#>
#> # Fixed Effects (Zero-Inflated Model)
#>
#> Parameter | Log-Odds | SE | 95% CI | z | p
#> ---------------------------------------------------------------
#> (Intercept) | -0.39 | 0.65 | [-1.67, 0.89] | -0.60 | 0.551
#> child | 2.05 | 0.31 | [ 1.45, 2.66] | 6.63 | < .001
#> camper [1] | -1.01 | 0.32 | [-1.64, -0.37] | -3.12 | 0.002
#>
#> # Random Effects (Count Model)
#>
#> Parameter | Coefficient
#> -----------------------------------------
#> Residual: SD (Observations) | 0.16
#> persons: SD (Intercept) | 0.93
model_parameters(m1, effects = "all", group_level = TRUE)
#> # Fixed Effects (Count Model)
#>
#> Parameter | Log-Mean | SE | 95% CI | z | p
#> ----------------------------------------------------------------
#> (Intercept) | 1.26 | 0.48 | [ 0.33, 2.19] | 2.66 | 0.008
#> child | -1.14 | 0.09 | [-1.32, -0.96] | -12.27 | < .001
#> camper [1] | 0.73 | 0.09 | [ 0.55, 0.92] | 7.85 | < .001
#>
#> # Fixed Effects (Zero-Inflated Model)
#>
#> Parameter | Log-Odds | SE | 95% CI | z | p
#> ---------------------------------------------------------------
#> (Intercept) | -0.39 | 0.65 | [-1.67, 0.89] | -0.60 | 0.551
#> child | 2.05 | 0.31 | [ 1.45, 2.66] | 6.63 | < .001
#> camper [1] | -1.01 | 0.32 | [-1.64, -0.37] | -3.12 | 0.002
#>
#> # Random Effects (Count Model): persons
#>
#> Parameter | Coefficient | SE | 95% CI
#> -----------------------------------------------------
#> (Intercept) [1] | -1.24 | 0.49 | [-2.20, -0.28]
#> (Intercept) [2] | -0.35 | 0.48 | [-1.28, 0.59]
#> (Intercept) [3] | 0.36 | 0.47 | [-0.56, 1.29]
#> (Intercept) [4] | 1.26 | 0.47 | [ 0.33, 2.18]
#>
#> # Random Effects (Zero-Inflated Model): persons
#>
#> Parameter | Log-Odds | SE | 95% CI
#> --------------------------------------------------
#> (Intercept) [1] | 1.57 | 0.67 | [ 0.26, 2.89]
#> (Intercept) [2] | 0.30 | 0.64 | [-0.95, 1.55]
#> (Intercept) [3] | -0.32 | 0.65 | [-1.59, 0.96]
#> (Intercept) [4] | -1.57 | 0.69 | [-2.91, -0.22]
print_html(model_parameters(m1, effects = "all"))
Regression Model | |||||
---|---|---|---|---|---|
Parameter | Coefficient | SE | 95% CI | z | p |
Fixed Effects (Count Model) | |||||
(Intercept) | 1.26 | 0.48 | (0.33, 2.19) | 2.66 | 0.008 |
child | -1.14 | 0.09 | (-1.32, -0.96) | -12.27 | < .001 |
camper (1) | 0.73 | 0.09 | (0.55, 0.92) | 7.85 | < .001 |
Fixed Effects (Zero-Inflated Model) | |||||
(Intercept) | -0.39 | 0.65 | (-1.67, 0.89) | -0.60 | 0.551 |
child | 2.05 | 0.31 | (1.45, 2.66) | 6.63 | < .001 |
camper (1) | -1.01 | 0.32 | (-1.64, -0.37) | -3.12 | 0.002 |
Random Effects (Count Model) | |||||
Residual: SD (Observations) | 0.16 | ||||
persons: SD (Intercept) | 0.93 |
Created on 2021-03-05 by the reprex package (v1.0.0)
ok, there are some minor print-issues for glmmTMB with zero inflation...
Btw, do you know why there are extra
""
s inGroup
column when converted to atibble
?
The group column is not allowed to have NA
, else split()
won't work properly. That's why the NAs are replaced by "".
I see, thanks.
Btw, is effects = "all_pars"
no longer allowed?
I thought that was a good way to have an output closely aligned with the broom.mixed
output.
library(parameters)
library(glmmTMB)
data(fish)
m1 <- glmmTMB(
count ~ child + camper + (1 | persons),
ziformula = ~ child + camper + (1 | persons),
data = fish,
family = truncated_poisson()
)
model_parameters(m1)
#> # Fixed Effects
#>
#> Parameter | Log-Mean | SE | 95% CI | z | p
#> ----------------------------------------------------------------
#> (Intercept) | 1.26 | 0.48 | [ 0.33, 2.19] | 2.66 | 0.008
#> child | -1.14 | 0.09 | [-1.32, -0.96] | -12.27 | < .001
#> camper [1] | 0.73 | 0.09 | [ 0.55, 0.92] | 7.85 | < .001
#>
#> # Zero-Inflated
#>
#> Parameter | Log-Odds | SE | 95% CI | z | p
#> ---------------------------------------------------------------
#> (Intercept) | -0.39 | 0.65 | [-1.67, 0.89] | -0.60 | 0.551
#> child | 2.05 | 0.31 | [ 1.45, 2.66] | 6.63 | < .001
#> camper [1] | -1.01 | 0.32 | [-1.64, -0.37] | -3.12 | 0.002
model_parameters(m1, effects = "random", group_level = TRUE)
#> # Random Effects: conditional (persons)
#>
#> Parameter | Coefficient | SE | 95% CI
#> -----------------------------------------------------
#> (Intercept) [1] | -1.24 | 0.49 | [-2.20, -0.28]
#> (Intercept) [2] | -0.35 | 0.48 | [-1.28, 0.59]
#> (Intercept) [3] | 0.36 | 0.47 | [-0.56, 1.29]
#> (Intercept) [4] | 1.26 | 0.47 | [ 0.33, 2.18]
#>
#> # Random Effects: zero_inflated (persons)
#>
#> Parameter | Coefficient | SE | 95% CI
#> -----------------------------------------------------
#> (Intercept) [1] | 1.57 | 0.67 | [ 0.26, 2.89]
#> (Intercept) [2] | 0.30 | 0.64 | [-0.95, 1.55]
#> (Intercept) [3] | -0.32 | 0.65 | [-1.59, 0.96]
#> (Intercept) [4] | -1.57 | 0.69 | [-2.91, -0.22]
model_parameters(m1, effects = "random")
#> Parameter | Coefficient
#> -----------------------------------------
#> Residual: SD (Observations) | 0.16
#> persons: SD (Intercept) | 0.93
model_parameters(m1, effects = "all", group_level = TRUE)
#> # Fixed Effects (Count Model)
#>
#> Parameter | Log-Mean | SE | 95% CI | z | p
#> ----------------------------------------------------------------
#> (Intercept) | 1.26 | 0.48 | [ 0.33, 2.19] | 2.66 | 0.008
#> child | -1.14 | 0.09 | [-1.32, -0.96] | -12.27 | < .001
#> camper [1] | 0.73 | 0.09 | [ 0.55, 0.92] | 7.85 | < .001
#>
#> # Fixed Effects (Zero-Inflated Model)
#>
#> Parameter | Log-Odds | SE | 95% CI | z | p
#> ---------------------------------------------------------------
#> (Intercept) | -0.39 | 0.65 | [-1.67, 0.89] | -0.60 | 0.551
#> child | 2.05 | 0.31 | [ 1.45, 2.66] | 6.63 | < .001
#> camper [1] | -1.01 | 0.32 | [-1.64, -0.37] | -3.12 | 0.002
#>
#> # Random Effects (Count Model): persons
#>
#> Parameter | Coefficient | SE | 95% CI
#> -----------------------------------------------------
#> (Intercept) [1] | -1.24 | 0.49 | [-2.20, -0.28]
#> (Intercept) [2] | -0.35 | 0.48 | [-1.28, 0.59]
#> (Intercept) [3] | 0.36 | 0.47 | [-0.56, 1.29]
#> (Intercept) [4] | 1.26 | 0.47 | [ 0.33, 2.18]
#>
#> # Random Effects (Zero-Inflated Model): persons
#>
#> Parameter | Coefficient | SE | 95% CI
#> -----------------------------------------------------
#> (Intercept) [1] | 1.57 | 0.67 | [ 0.26, 2.89]
#> (Intercept) [2] | 0.30 | 0.64 | [-0.95, 1.55]
#> (Intercept) [3] | -0.32 | 0.65 | [-1.59, 0.96]
#> (Intercept) [4] | -1.57 | 0.69 | [-2.91, -0.22]
model_parameters(m1, effects = "all")
#> # Fixed Effects (Count Model)
#>
#> Parameter | Log-Mean | SE | 95% CI | z | p
#> ----------------------------------------------------------------
#> (Intercept) | 1.26 | 0.48 | [ 0.33, 2.19] | 2.66 | 0.008
#> child | -1.14 | 0.09 | [-1.32, -0.96] | -12.27 | < .001
#> camper [1] | 0.73 | 0.09 | [ 0.55, 0.92] | 7.85 | < .001
#>
#> # Fixed Effects (Zero-Inflated Model)
#>
#> Parameter | Log-Odds | SE | 95% CI | z | p
#> ---------------------------------------------------------------
#> (Intercept) | -0.39 | 0.65 | [-1.67, 0.89] | -0.60 | 0.551
#> child | 2.05 | 0.31 | [ 1.45, 2.66] | 6.63 | < .001
#> camper [1] | -1.01 | 0.32 | [-1.64, -0.37] | -3.12 | 0.002
#>
#> # Random Effects Variances
#>
#> Parameter | Coefficient
#> -----------------------------------------
#> Residual: SD (Observations) | 0.16
#> persons: SD (Intercept) | 0.93
Created on 2021-03-05 by the reprex package (v1.0.0)
Btw, is
effects = "all_pars"
no longer allowed? I thought that was a good way to have an output closely aligned with thebroom.mixed
output.
No, for now, I followed the convention we have for Bayesian models. Not sure if it could make sense to have all together in one output (i.e. fixed effects, random effects (BLUPs), and random effects variances?
I thought that was a good way to have an output closely aligned with the broom.mixed output.
This is what effects = "all"
returns by default:
library(lme4)
#> Loading required package: Matrix
library(parameters)
mod <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
standardize_names(model_parameters(mod, effects = "all"), style = "broom")
#> term level estimate std.error conf.level conf.low
#> 1 (Intercept) NA 251.4051048 6.824597 0.95 238.029141
#> 2 Days NA 10.4672860 1.545790 0.95 7.437594
#> 3 SD (Observations) NA 25.5917957 NA 0.95 NA
#> 4 SD (Intercept) NA 24.7406580 NA 0.95 NA
#> 5 SD (Days) NA 5.9221377 NA 0.95 NA
#> 6 Cor (Intercept~Days) NA 0.2560298 NA 0.95 NA
#> conf.high statistic df.error p.value effect group
#> 1 264.78107 36.838090 174 4.537104e-297 fixed
#> 2 13.49698 6.771481 174 1.274703e-11 fixed
#> 3 NA NA NA NA random Residual
#> 4 NA NA NA NA random Subject
#> 5 NA NA NA NA random Subject
#> 6 NA NA NA NA random Subject
broom.mixed::tidy(mod)
#> Registered S3 method overwritten by 'broom.mixed':
#> method from
#> tidy.gamlss broom
#> # A tibble: 6 x 6
#> effect group term estimate std.error statistic
#> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 fixed <NA> (Intercept) 251. 6.82 36.8
#> 2 fixed <NA> Days 10.5 1.55 6.77
#> 3 ran_pars Subject sd__(Intercept) 24.7 NA NA
#> 4 ran_pars Subject cor__(Intercept).Days 0.0656 NA NA
#> 5 ran_pars Subject sd__Days 5.92 NA NA
#> 6 ran_pars Residual sd__Observation 25.6 NA NA
Created on 2021-03-05 by the reprex package (v1.0.0)
That's awesome! That's exactly the behavior I was looking for 😄
Oh, one more thing: What is that empty column level
correspond to? It's just NA
s in the output.
when you set group_level
to TRUE
. But indeed, could be removed when completely NA.
The group column is not allowed to have NA, else split() won't work properly. That's why the NAs are replaced by "".
Is it possible for us to do whatever {broom.mixed}
is doing here so that the group column entries are not surrounded by quotes ""
?
library(lme4)
#> Loading required package: Matrix
library(broom.mixed)
library(tibble)
library(parameters)
options(tibble.width = Inf)
mod <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
# `broom.mixed` output --------------------------------
tidy(mod)
#> # A tibble: 6 x 6
#> effect group term estimate std.error statistic
#> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 fixed <NA> (Intercept) 251. 6.82 36.8
#> 2 fixed <NA> Days 10.5 1.55 6.77
#> 3 ran_pars Subject sd__(Intercept) 24.7 NA NA
#> 4 ran_pars Subject cor__(Intercept).Days 0.0656 NA NA
#> 5 ran_pars Subject sd__Days 5.92 NA NA
#> 6 ran_pars Residual sd__Observation 25.6 NA NA
# `parameters` output ---------------------------------
# (with further modications to match `broom` conventions)
model_parameters(mod, effects = "all") %>%
standardize_names(style = "broom") %>%
as_tibble()
#> # A tibble: 6 x 11
#> term estimate std.error conf.level conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 251. 6.82 0.95 238. 265.
#> 2 Days 10.5 1.55 0.95 7.42 13.5
#> 3 SD (Intercept) 24.7 NA 0.95 NA NA
#> 4 SD (Days) 5.92 NA 0.95 NA NA
#> 5 Cor (Intercept~Days: Subject) 0.0656 NA 0.95 NA NA
#> 6 SD (Observations) 25.6 NA 0.95 NA NA
#> statistic df.error p.value effect group
#> <dbl> <int> <dbl> <chr> <chr>
#> 1 36.8 174 4.37e-84 fixed ""
#> 2 6.77 174 1.88e-10 fixed ""
#> 3 NA NA NA random "Subject"
#> 4 NA NA NA random "Subject"
#> 5 NA NA NA random "Subject"
#> 6 NA NA NA random "Residual"
Created on 2021-11-03 by the reprex package (v2.0.1)
The group column is not surrounded by quotes.
Thanks for commenting in that issue. Sorry for not checking the as.data.frame
output before.
Just saw we had this discussion before: https://github.com/easystats/parameters/issues/422#issuecomment-791216565
:-D
Lol. Yes, that is just tibble printing aids to prevent misreading of values by users
To facilitate conversion from
broom.mixed
toparameters
. Users expect such a column in the output dataframe.