Closed jiaobf closed 2 years ago
Hello, where could we find the gfs.2022010500f24 file ?
Hello, where could we find the gfs.2022010500f24 file ?
Thank you for your attention. GFS file can be download with
wget https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gfs.20220228/00/atmos/gfs.t00z.pgrb2.0p50.f024
in which gfs.YYYYMMDD/00 can be set to any day in the past week.
This should be fixed with the release of the next eccodes-python, which now accepts numpy.int64 for setting keys: https://github.com/ecmwf/eccodes-python/commits/develop You can either try the develop branch of eccodes-python, or wait for the release, which should be in a couple of days.
As mentioned in this issue #267 (but things changed a bit since ...) it fails when pandas function encounters timestamp (or timedelta) int/long values.
You can fix it (waiting for the new version of cfgrib) by updating the convert_label_indexer
function in xarray/core/indexing.py
file and adding the few lines as illustrated below (with # ADDED LINE comment) :
`def convert_label_indexer(index, label, index_name="", method=None, tolerance=None): """Given a pandas.Index and labels (e.g., from getitem) for one dimension, return an indexer suitable for indexing an ndarray along that dimension. If 'index' is a pandas.MultiIndex and depending on 'label', return a new pandas.Index or pandas.MultiIndex (otherwise return None). """ new_index = None
if isinstance(label, slice):
if method is not None or tolerance is not None:
raise NotImplementedError(
"cannot use ''method'' argument if any indexers are slice objects"
)
indexer = index.slice_indexer(
_sanitize_slice_element(label.start),
_sanitize_slice_element(label.stop),
_sanitize_slice_element(label.step),
)
if not isinstance(indexer, slice):
# unlike pandas, in xarray we never want to silently convert a
# slice indexer into an array indexer
raise KeyError(
"cannot represent labeled-based slice indexer for dimension "
f"{index_name!r} with a slice over integer positions; the index is "
"unsorted or non-unique"
)
elif is_dict_like(label):
is_nested_vals = _is_nested_tuple(tuple(label.values()))
if not isinstance(index, pd.MultiIndex):
raise ValueError(
"cannot use a dict-like object for selection on "
"a dimension that does not have a MultiIndex"
)
elif len(label) == index.nlevels and not is_nested_vals:
indexer = index.get_loc(tuple(label[k] for k in index.names))
else:
for k, v in label.items():
# index should be an item (i.e. Hashable) not an array-like
if isinstance(v, Sequence) and not isinstance(v, str):
raise ValueError(
"Vectorized selection is not "
"available along level variable: " + k
)
indexer, new_index = index.get_loc_level(
tuple(label.values()), level=tuple(label.keys())
)
# GH2619. Raise a KeyError if nothing is chosen
if indexer.dtype.kind == "b" and indexer.sum() == 0:
raise KeyError(f"{label} not found")
elif isinstance(label, tuple) and isinstance(index, pd.MultiIndex):
if _is_nested_tuple(label):
indexer = index.get_locs(label)
elif len(label) == index.nlevels:
indexer = index.get_loc(label)
else:
indexer, new_index = index.get_loc_level(
label, level=list(range(len(label)))
)
else:
label = (
label
if getattr(label, "ndim", 1) > 1 # vectorized-indexing
else _asarray_tuplesafe(label)
)
if label.ndim == 0:
# see https://github.com/pydata/xarray/pull/4292 for details
label_value = label[()] if label.dtype.kind in "mM" else label.item()
if isinstance(index, pd.MultiIndex):
indexer, new_index = index.get_loc_level(label_value, level=0)
elif isinstance(index, pd.CategoricalIndex):
if method is not None:
raise ValueError(
"'method' is not a valid kwarg when indexing using a CategoricalIndex."
)
if tolerance is not None:
raise ValueError(
"'tolerance' is not a valid kwarg when indexing using a CategoricalIndex."
)
indexer = index.get_loc(label_value)
else:
if isinstance(index, pd.DatetimeIndex): # ADDED LINE
indexer = index.get_loc(pd.Timestamp(label_value), method=method, tolerance=tolerance) # ADDED LINE
elif isinstance(index, pd.TimedeltaIndex): # ADDED LINE
indexer = index.get_loc(pd.Timedelta(label_value), method=method, tolerance=tolerance) # ADDED LINE
else: # ADDED LINE
indexer = index.get_loc(label_value, method=method, tolerance=tolerance)
elif label.dtype.kind == "b":
indexer = label
else:
if isinstance(index, pd.MultiIndex) and label.ndim > 1:
raise ValueError(
"Vectorized selection is not available along "
"MultiIndex variable: " + index_name
)
indexer = get_indexer_nd(index, label, method, tolerance)
if np.any(indexer < 0):
raise KeyError(f"not all values found in index {index_name!r}")
return indexer, new_index`
This should be fixed with the release of the next eccodes-python, which now accepts numpy.int64 for setting keys: https://github.com/ecmwf/eccodes-python/commits/develop You can either try the develop branch of eccodes-python, or wait for the release, which should be in a couple of days.
I manually modified line 973 and line 2063 of gribapi/gribapi.py , but it didn't seem to work.
Also, make sure you're using cfgrib from the master branch - this fix was important but is not yet in a release: https://github.com/ecmwf/cfgrib/commit/3cc01e395cd66a376a279c0c603cbedcaeda7f50
I read the temperature from GFS and tried to write the data to a new GRIB file .
Running the script directly will result in an error
following #272 , it works with a warning :
and the time information in the grib file is incorrect
which should be
Environment: Python 3.8 from conda-forge on centos7
pandas 1.3.4 cfgrib 0.9.9.1 xarray 0.20.1