Thanks for sharing the wonderful idea! When I select different wavelet_type, I get different low_lap and highs_lap. However, after the dwt_inverse_3d_lap function, I get the same voxels_pred. What is the reason? @edward1997104
`for args in args_list:
try:
idx, path, resolution_index, clip_value = args
assert path.endswith('.npy')
voxels_np = np.load(path)
voxels_torch = torch.from_numpy(voxels_np).unsqueeze(0).unsqueeze(0).float().to(device)
Thanks for sharing the wonderful idea! When I select different wavelet_type, I get different low_lap and highs_lap. However, after the dwt_inverse_3d_lap function, I get the same voxels_pred. What is the reason? @edward1997104 `for args in args_list: try: idx, path, resolution_index, clip_value = args assert path.endswith('.npy') voxels_np = np.load(path) voxels_torch = torch.from_numpy(voxels_np).unsqueeze(0).unsqueeze(0).float().to(device)