Describe the bug
Error while training gpt2 on kaggle
/root
Downloading base model...
<class 'EasyDel.modules.gpt2.modelling_gpt2_flax.FlaxGPT2LMHeadModel'>
<class 'EasyDel.modules.gpt2.gpt2_configuration.GPT2Config'>
Downloading data files: 100%|██████████████████| 1/1 [00:00<00:00, 11214.72it/s]
Extracting data files: 100%|████████████████████| 1/1 [00:00<00:00, 1438.38it/s]
Generating train split: 186074 examples [00:00, 353355.15 examples/s]
Map (num_proc=12): 100%|██████| 186074/186074 [00:03<00:00, 47310.49 examples/s]
/usr/local/lib/python3.10/site-packages/datasets/table.py:1421: FutureWarning: promote has been superseded by promote_options='default'.
table = cls._concat_blocks(blocks, axis=0)
Map (num_proc=12): 0%| | 0/186074 [00:00<?, ? examples/s]/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
/usr/local/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by promote_options='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
Map (num_proc=12): 100%|███████| 186074/186074 [00:21<00:00, 8523.98 examples/s]
Warning : In case of using `finetune = True` and Passing `checkpoint_path = None` you should pass parameters in train function
wandb: Currently logged in as: jchauhan (safedep). Use `wandb login --relogin` to force relogin
wandb: Tracking run with wandb version 0.16.2
wandb: Run data is saved locally in /root/wandb/run-20240201_154611-g3pguwrw
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run avid-sky-14
wandb: ⭐️ View project at [https://wandb.ai/safedep/EasyDeL-raven_gpt2.easydel](https://wandb.ai/safedep/EasyDeL-raven_gpt2.easydel%3C/span%3E)
wandb: 🚀 View run at [https://wandb.ai/safedep/EasyDeL-raven_gpt2.easydel/runs/g3pguwrw](https://wandb.ai/safedep/EasyDeL-raven_gpt2.easydel/runs/g3pguwrw%3C/span%3E)
Time Took to Complete Task configure dataloaders (microseconds) : 0.4191398620605469
Time Took to Complete Task configure Model ,Optimizer ,Scheduler and Config (microseconds) : 597.6324081420898
Time Took to Complete Task configure functions and sharding them (microseconds) : 745.0320720672607
Action : Sharding Passed Parameters
Traceback (most recent call last):
File "/root/train.py", line 123, in <module>
output = trainer.train(flax.core.FrozenDict({"params": params}))
File "/usr/local/lib/python3.10/site-packages/EasyDel/trainer/causal_language_model_trainer.py", line 478, in train
sharded_state, shard_fns, gather_fns = self.initialize_state(
File "/usr/local/lib/python3.10/site-packages/EasyDel/trainer/causal_language_model_trainer.py", line 393, in initialize_state
params = model_parameters if not self.arguments.do_shard_fns else jax.tree_util.tree_map(
File "/usr/local/lib/python3.10/site-packages/jax/_src/tree_util.py", line 243, in tree_map
all_leaves = [leaves] + [treedef.flatten_up_to(r) for r in rest]
File "/usr/local/lib/python3.10/site-packages/jax/_src/tree_util.py", line 243, in <listcomp>
all_leaves = [leaves] + [treedef.flatten_up_to(r) for r in rest]
ValueError: Dict key mismatch; expected keys: ['transformer']; dict: {'transformer': {'wte': {'embedding':
To Reproduce
%%writefile /root/train.py
import os
import jax.numpy
import EasyDel
from EasyDel import (
TrainArguments,
CausalLanguageModelTrainer,
AutoEasyDelModelForCausalLM,
EasyDelOptimizers,
EasyDelSchedulers,
EasyDelGradientCheckPointers
)
from datasets import load_dataset
import flax
from jax import numpy as jnp
from transformers import AutoTokenizer
from kaggle_secrets import UserSecretsClient
user_secrets = UserSecretsClient()
wand_key = user_secrets.get_secret("WAND_KEY")
# os.environ["WANDB_DISABLED"] = "false"
os.environ["WANDB_API_KEY"] = wand_key
base_model_hf_repo_id_or_path = "gpt2"
max_length = 1024
trained_model_name = "****"
trained_model_hf_repo_id = f"****/{trained_model_name}"
easydel_trained_model_name = f"{trained_model_name}.easydel"
training_data_files="****"
import json
import sys
jcdataset = load_dataset('****', split='train')
f = open("./lmsys-toxic-gpt.json", "w")
for conversation in jcdataset['chunks']:
out = "<|input|><|response|>"
for req_res in conversation:
out = out + req_res['prompt']
f.write(json.dumps({'train': out}))
f.write("\n")
out = "<|input|>" + req_res['response'] +"<|response|>"
print("Downloading base model...")
model, params = AutoEasyDelModelForCausalLM.from_pretrained(base_model_hf_repo_id_or_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
base_model_hf_repo_id_or_path,
trust_remote_code=True
)
tokenizer.pad_token = tokenizer.eos_token
configs_to_init_model_class = {
"config": model.config,
"dtype": jnp.bfloat16,
"param_dtype": jnp.bfloat16,
"input_shape": (1, 1)
}
model.config.use_sacn_mlp = False
print(type(model))
print(type(model.config))
train_arguments = TrainArguments(
model_class=type(model),
model_name=easydel_trained_model_name,
num_train_epochs=3,
configs_to_initialize_model_class=configs_to_init_model_class,
custom_rule=model.config.get_partition_rules(True),
learning_rate=5e-5,
learning_rate_end=1e-6,
optimizer=EasyDelOptimizers.ADAMW, # "adamw", "lion", "adafactor" are supported
scheduler=EasyDelSchedulers.LINEAR,
# "linear","cosine", "none" ,"warm_up_cosine" and "warm_up_linear" are supported
weight_decay=0.01,
total_batch_size=8,
max_steps=None, # None to let trainer Decide
do_train=True,
do_eval=False, # it's optional but supported
backend="tpu", # default backed is set to cpu, so you must define you want to use tpu cpu or gpu
max_length=max_length, # Note that you have to change this in the model config too
gradient_checkpointing=EasyDelGradientCheckPointers.NOTHING_SAVEABLE,
sharding_array=(1, -1, 1, 1), # the way to shard model across gpu,cpu or TPUs using sharding array (1, -1, 1, 1)
# everything training will be in fully FSDP automatic and share data between devices
use_pjit_attention_force=False,
remove_ckpt_after_load=True,
gradient_accumulation_steps=8,
loss_re_mat="",
dtype=jnp.bfloat16
)
def ultra_chat_prompting_process(
data_chunk
):
return {"prompt": data_chunk['train']}
tokenization_process = lambda data_chunk: tokenizer(
data_chunk["prompt"],
add_special_tokens=False,
max_length=max_length,
padding="max_length"
)
dataset = load_dataset("json", data_files=training_data_files)
dataset_train = dataset["train"].map(ultra_chat_prompting_process, num_proc=12)
dataset_train = dataset_train.map(
tokenization_process,
num_proc=12,
remove_columns=dataset_train.column_names
)
# you can do the same for evaluation process dataset
trainer = CausalLanguageModelTrainer(
train_arguments,
dataset_train,
checkpoint_path=None
)
output = trainer.train(flax.core.FrozenDict({"params": params}))
print(f"Hey ! , here's where your model saved {output.checkpoint_path}")
import tempfile
import os
from huggingface_hub import Repository, create_repo
from transformers import LlamaForCausalLM, LlamaTokenizer
import jax
from EasyDel import (
AutoEasyDelConfig,
EasyDelState,
easystate_to_huggingface_model
)
# Function to create a Hugging Face repository
def create_hf_repo(repo_name, hub_token=None):
tmp_dir = tempfile.TemporaryDirectory()
tmp_output_dir = tmp_dir.name
if repo_name is None:
repo_name = os.path.basename(tmp_output_dir)
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=hub_token).repo_id
# Clone repo locally
repo = Repository(tmp_output_dir, clone_from=repo_id, token=hub_token)
tmp_dir.cleanup()
return repo
# Define the base model ID, checkpoint path, and target Hugging Face repo ID
chkpoint_path = output.checkpoint_path
# Load configuration for the custom model
config = AutoEasyDelConfig.from_pretrained(base_model_hf_repo_id_or_path)
# Create the custom model using EasyDel
with jax.default_device(jax.devices("cpu")[0]):
model = easystate_to_huggingface_model(
state=EasyDelState.load_state(chkpoint_path),
base_huggingface_module=LlamaForCausalLM,
config=config
)
#
model = model.half() # Convert to a Hugging Face model
# Check if the target Hugging Face repo exists, and create it if not
hub_token = None # login is already done
# repo = create_hf_repo(trained_model_hf_repo_id, hub_token)
# Optionally, you can push the base model to the target repo as well
base_model = LlamaForCausalLM.from_pretrained(base_model_hf_repo_id_or_path)
# base_model.push_to_hub(trained_model_hf_repo_id, token=hub_token)
tokenizer.push_to_hub(trained_model_hf_repo_id, token=hub_token)
# Push the custom model to the target Hugging Face repo
model.push_to_hub(trained_model_hf_repo_id, token=hub_token)
Describe the bug Error while training gpt2 on kaggle
To Reproduce