eric-yyjau / pytorch-superpoint

Superpoint Implemented in PyTorch: https://arxiv.org/abs/1712.07629
MIT License
801 stars 170 forks source link

training_model_frontend #54

Open P66094125 opened 3 years ago

P66094125 commented 3 years ago

Traceback (most recent call last): File "train4.py", line 144, in args.func(config, output_dir, args) File "train4.py", line 44, in train_base return train_joint(config, output_dir, args) File "train4.py", line 96, in train_joint train_agent.train() File "C:\Users\User\Desktop\python\STUDY_CNN_imagematching\pytorch-superpoint-master-venv\Train_model_frontend.py", line 275, in train for i, sample_train in tqdm(enumerate(self.train_loader)): File "C:\Users\User\Desktop\python\STUDY_CNN_imagematching\pytorch-superpoint-master-venv\venv\lib\site-packages\torch\utils\data\dataloader.py", line 352, in iter return self._get_iterator() File "C:\Users\User\Desktop\python\STUDY_CNN_imagematching\pytorch-superpoint-master-venv\venv\lib\site-packages\torch\utils\data\dataloader.py", line 294, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "C:\Users\User\Desktop\python\STUDY_CNN_imagematching\pytorch-superpoint-master-venv\venv\lib\site-packages\torch\utils\data\dataloader.py", line 801, in init w.start() File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\multiprocessing\process.py", line 105, in start self._popen = self._Popen(self) File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\multiprocessing\context.py", line 223, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\multiprocessing\context.py", line 322, in _Popen return Popen(process_obj) File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\multiprocessing\popen_spawn_win32.py", line 65, in init reduction.dump(process_obj, to_child) File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\multiprocessing\reduction.py", line 60, in dump ForkingPickler(file, protocol).dump(obj) File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\multiprocessing\pool.py", line 528, in reduce 'pool objects cannot be passed between processes or pickled' NotImplementedError: pool objects cannot be passed between processes or pickled

(venv) C:\Users\User\Desktop\python\STUDY_CNN_imagematching\pytorch-superpoint-master-venv>Traceback (most recent call last): File "", line 1, in File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\multiprocessing\spawn.py", line 105, in spawn_main exitcode = _main(fd) File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\multiprocessing\spawn.py", line 115, in _main self = reduction.pickle.load(from_parent) EOFError: Ran out of input

eric-yyjau commented 3 years ago

Looks like the dataset path is not set correctly? So there's no input for the dataloader. Thanks.

P66094125 commented 3 years ago

Thank you for your answer, eric-yyjau.

P66094125 commented 2 years ago

what difference between "train_model_heatmap" and "train_model_fronted"?

image

amethystwu commented 2 years ago

Hi, I have encountered the same error when running the 1st step to train MagicPoint on Synthetic Shapes. The dataset is datasets\SyntheticDataset_gaussian which seems correct. I run it in conda virtual environment in Windows. 2021-12-17 14_23_51-Image_Matching – train4 py

P66094125 commented 2 years ago

@amethystwu hi, I run it in conda virtual environment in ubuntu to solve this problem.

Khoronus commented 2 years ago

On Windows, I was able to execute the command: python train4.py train_base configs/magicpoint_shapes_pair.yaml magicpoint_synth --eval by changing the lines 48, 49 in the file utils/loader.py as follow: workers_train = training_params.get('workers_train', 0) # 1 16 workers_val = training_params.get('workers_val', 0) # 1 16

It looks like an error caused by pickle when running on multiple workers.