ericmjl / Network-Analysis-Made-Simple

An introduction to network analysis and applied graph theory using Python and NetworkX
https://ericmjl.github.io/Network-Analysis-Made-Simple/index.html
MIT License
1.04k stars 401 forks source link

Scheduled weekly dependency update for week 03 #385

Closed pyup-bot closed 9 months ago

pyup-bot commented 9 months ago

Update ipykernel from 6.26.0 to 6.29.0.

Changelog ### 6.29.0 ``` ([Full Changelog](https://github.com/ipython/ipykernel/compare/v6.28.0...84955484ec1636ee4c7611471d20df2016b5cb57)) Enhancements made - Always set debugger to true in kernelspec [1191](https://github.com/ipython/ipykernel/pull/1191) ([ianthomas23](https://github.com/ianthomas23)) Bugs fixed - Revert "Enable `ProactorEventLoop` on windows for `ipykernel`" [1194](https://github.com/ipython/ipykernel/pull/1194) ([blink1073](https://github.com/blink1073)) - Make outputs go to correct cell when generated in threads/asyncio [1186](https://github.com/ipython/ipykernel/pull/1186) ([krassowski](https://github.com/krassowski)) Maintenance and upkeep improvements - Pin pytest-asyncio to 0.23.2 [1189](https://github.com/ipython/ipykernel/pull/1189) ([ianthomas23](https://github.com/ianthomas23)) - chore: update pre-commit hooks [1187](https://github.com/ipython/ipykernel/pull/1187) ([pre-commit-ci](https://github.com/pre-commit-ci)) Contributors to this release ([GitHub contributors page for this release](https://github.com/ipython/ipykernel/graphs/contributors?from=2023-12-26&to=2024-01-16&type=c)) [blink1073](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Ablink1073+updated%3A2023-12-26..2024-01-16&type=Issues) | [ianthomas23](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Aianthomas23+updated%3A2023-12-26..2024-01-16&type=Issues) | [krassowski](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Akrassowski+updated%3A2023-12-26..2024-01-16&type=Issues) | [pre-commit-ci](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Apre-commit-ci+updated%3A2023-12-26..2024-01-16&type=Issues) ``` ### 6.28.0 ``` ([Full Changelog](https://github.com/ipython/ipykernel/compare/v6.27.1...de45c7a49e197f0889f867f33f24cce322768a0e)) Enhancements made - Enable `ProactorEventLoop` on windows for `ipykernel` [1184](https://github.com/ipython/ipykernel/pull/1184) ([NewUserHa](https://github.com/NewUserHa)) - Adds a flag in debug_info for the copyToGlobals support [1099](https://github.com/ipython/ipykernel/pull/1099) ([brichet](https://github.com/brichet)) Maintenance and upkeep improvements - Support python 3.12 [1185](https://github.com/ipython/ipykernel/pull/1185) ([blink1073](https://github.com/blink1073)) - Bump actions/setup-python from 4 to 5 [1181](https://github.com/ipython/ipykernel/pull/1181) ([dependabot](https://github.com/dependabot)) - chore: update pre-commit hooks [1179](https://github.com/ipython/ipykernel/pull/1179) ([pre-commit-ci](https://github.com/pre-commit-ci)) - Refactor execute_request to reduce redundancy and improve consistency [1177](https://github.com/ipython/ipykernel/pull/1177) ([jjvraw](https://github.com/jjvraw)) Documentation improvements - Update pytest commands in README [1178](https://github.com/ipython/ipykernel/pull/1178) ([ianthomas23](https://github.com/ianthomas23)) Contributors to this release ([GitHub contributors page for this release](https://github.com/ipython/ipykernel/graphs/contributors?from=2023-11-27&to=2023-12-26&type=c)) [blink1073](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Ablink1073+updated%3A2023-11-27..2023-12-26&type=Issues) | [brichet](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Abrichet+updated%3A2023-11-27..2023-12-26&type=Issues) | [dependabot](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Adependabot+updated%3A2023-11-27..2023-12-26&type=Issues) | [ianthomas23](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Aianthomas23+updated%3A2023-11-27..2023-12-26&type=Issues) | [jjvraw](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Ajjvraw+updated%3A2023-11-27..2023-12-26&type=Issues) | [NewUserHa](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3ANewUserHa+updated%3A2023-11-27..2023-12-26&type=Issues) | [pre-commit-ci](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Apre-commit-ci+updated%3A2023-11-27..2023-12-26&type=Issues) ``` ### 6.27.1 ``` ([Full Changelog](https://github.com/ipython/ipykernel/compare/v6.27.0...f9c517e868462d05d6854204c2ad0a244db1cd19)) Bugs fixed - Fix edit magic payload type [1171](https://github.com/ipython/ipykernel/pull/1171) ([blink1073](https://github.com/blink1073)) Contributors to this release ([GitHub contributors page for this release](https://github.com/ipython/ipykernel/graphs/contributors?from=2023-11-21&to=2023-11-27&type=c)) [blink1073](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Ablink1073+updated%3A2023-11-21..2023-11-27&type=Issues) ``` ### 6.27.0 ``` ([Full Changelog](https://github.com/ipython/ipykernel/compare/v6.26.0...465d34483103d23f471a4795fe5fabb9cf7ac3f5)) Enhancements made - Extend argument handling of do_execute with cell metadata [1169](https://github.com/ipython/ipykernel/pull/1169) ([jjvraw](https://github.com/jjvraw)) Maintenance and upkeep improvements - Update ruff and typings [1167](https://github.com/ipython/ipykernel/pull/1167) ([blink1073](https://github.com/blink1073)) - Clean up ruff config [1165](https://github.com/ipython/ipykernel/pull/1165) ([blink1073](https://github.com/blink1073)) - chore: update pre-commit hooks [1164](https://github.com/ipython/ipykernel/pull/1164) ([pre-commit-ci](https://github.com/pre-commit-ci)) - Clean up typing config [1163](https://github.com/ipython/ipykernel/pull/1163) ([blink1073](https://github.com/blink1073)) - Update typing for traitlets 5.13 [1162](https://github.com/ipython/ipykernel/pull/1162) ([blink1073](https://github.com/blink1073)) - Adopt ruff format [1161](https://github.com/ipython/ipykernel/pull/1161) ([blink1073](https://github.com/blink1073)) - Update typing for jupyter_client 8.5 [1160](https://github.com/ipython/ipykernel/pull/1160) ([blink1073](https://github.com/blink1073)) Contributors to this release ([GitHub contributors page for this release](https://github.com/ipython/ipykernel/graphs/contributors?from=2023-10-24&to=2023-11-21&type=c)) [blink1073](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Ablink1073+updated%3A2023-10-24..2023-11-21&type=Issues) | [jjvraw](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Ajjvraw+updated%3A2023-10-24..2023-11-21&type=Issues) | [pre-commit-ci](https://github.com/search?q=repo%3Aipython%2Fipykernel+involves%3Apre-commit-ci+updated%3A2023-10-24..2023-11-21&type=Issues) ```
Links - PyPI: https://pypi.org/project/ipykernel - Changelog: https://data.safetycli.com/changelogs/ipykernel/

Update matplotlib from 3.8.1 to 3.8.2.

Changelog ### 3.8.2 ``` This is the second bugfix release of the 3.8 series. Highlights of this release include: - Fix a segfault in the MacOS backend when running on Python 3.12 - Fix Contour labeling manual positions selecting incorrect contours. - Various documentation improvements ```
Links - PyPI: https://pypi.org/project/matplotlib - Changelog: https://data.safetycli.com/changelogs/matplotlib/ - Homepage: https://matplotlib.org

Update mkdocs-material from 9.4.8 to 9.5.4.

Changelog ### 9.5.4 ``` - Fixed 6645: Local storage with invalid value can break site - Fixed 6635: Tags icons before default ignored if default is set ``` ### 9.5.3 ``` - Limited version range of MkDocs to < 1.6 - Updated Macedonian translations - Fixed 6520: Group plugin crashes when using mike - Fixed 6494: Hide author's email address if disabled in git-authors plugin ``` ### 9.5.2 ``` - Fixed types for `slugify` settings in blog plugin config - Fixed 6469: Horizontal scrollbars on MathJax containers ``` ### 9.5.1 ``` - Updated Greek translations - Fixed 6464: Privacy plugin cannot be enabled - Fixed 6461: Sorting blog posts ignores time component in date ``` ### 9.5.0 ``` Merged Insiders features of 'Goat's Horn' funding goal - Added privacy plugin: automatic downloading of external assets - Added support for card grids and grid layouts - Added support for improved tooltips - Added support for content tabs anchor links (deep linking) - Added support for automatic dark/light mode - Added support for document contributors ``` ### 9.4.14 ``` - Added support for linking authors in blog posts ``` ### 9.4.13 ``` - Fixed 6365: Blog plugin pagination links to previous pages broken - Fixed 5758: Updated Mermaid.js to version 10.6.1 (latest) ``` ### 9.4.12 ``` - Improved blog plugin to generate Unicode-aware slugs by default - Fixed non-deterministic order of categories in blog plugin ``` ### 9.4.11 ``` - Fixed 6364: Search plugin crashing when enabling theme while serving - Fixed blog plugin crashing when disabling pagination ``` ### 9.4.10 ``` - Fixed 6356: Version selector can't be disabled via mike's configuration - Fixed 6281: Navigation not rendering due to Safari bug (9.4.2 regression) - Fixed 6261: Navigation expansion animates on first load (9.4.2 regression) ``` ### 9.4.9 ``` - Fixed 6344: Long entries cutoff in table of contents - Fixed 6336: Custom template for glob archive not working with pagination - Fixed 6328: Blog plugin crashes for locales with dashes, e.g. `pt-BR` - Fixed 6327: Copy-to-clipboard button doesn't trim trailing line feed - Fixed 6302: Version strings not matched when using mike, only aliases - Fixed instant navigation progress indicator for gzipped content in Chrome - Fixed rendering bug on details marker rotation in Firefox ```
Links - PyPI: https://pypi.org/project/mkdocs-material - Changelog: https://data.safetycli.com/changelogs/mkdocs-material/

Update nbconvert from 7.11.0 to 7.14.2.

Changelog ### 7.14.2 ``` ([Full Changelog](https://github.com/jupyter/nbconvert/compare/v7.14.1...9d8a7a8771d0349e49328efb7fc2b8fb99c7cc1f)) Maintenance and upkeep improvements - update to mermaid 10.7.0 [2098](https://github.com/jupyter/nbconvert/pull/2098) ([bollwyvl](https://github.com/bollwyvl)) Contributors to this release ([GitHub contributors page for this release](https://github.com/jupyter/nbconvert/graphs/contributors?from=2024-01-11&to=2024-01-16&type=c)) [bollwyvl](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Abollwyvl+updated%3A2024-01-11..2024-01-16&type=Issues) ``` ### 7.14.1 ``` ([Full Changelog](https://github.com/jupyter/nbconvert/compare/v7.14.0...dedd81acdde7c96204d01f1392af896d2e6dbe1b)) Bugs fixed - Fix broken image scaling in case a custom width or height is provided for the image [2094](https://github.com/jupyter/nbconvert/pull/2094) ([AndSte01](https://github.com/AndSte01)) Maintenance and upkeep improvements - Allow pre-fetch of css files without attempting download [2095](https://github.com/jupyter/nbconvert/pull/2095) ([AlexanderRichert-NOAA](https://github.com/AlexanderRichert-NOAA)) - Bump the actions group with 1 update [2091](https://github.com/jupyter/nbconvert/pull/2091) ([dependabot](https://github.com/dependabot)) Contributors to this release ([GitHub contributors page for this release](https://github.com/jupyter/nbconvert/graphs/contributors?from=2024-01-01&to=2024-01-11&type=c)) [AlexanderRichert-NOAA](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3AAlexanderRichert-NOAA+updated%3A2024-01-01..2024-01-11&type=Issues) | [AndSte01](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3AAndSte01+updated%3A2024-01-01..2024-01-11&type=Issues) | [dependabot](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Adependabot+updated%3A2024-01-01..2024-01-11&type=Issues) ``` ### 7.14.0 ``` ([Full Changelog](https://github.com/jupyter/nbconvert/compare/v7.13.1...0f17b3069d320565af12a4a12da7d9ce3c18dac4)) Enhancements made - Convert `coalescese_streams` function to `CoalesceStreamsPreprocessor` [2089](https://github.com/jupyter/nbconvert/pull/2089) ([ryan-williams](https://github.com/ryan-williams)) Maintenance and upkeep improvements - chore: update pre-commit hooks [2090](https://github.com/jupyter/nbconvert/pull/2090) ([pre-commit-ci](https://github.com/pre-commit-ci)) - Fix webpdf test on Python 3.12 [2088](https://github.com/jupyter/nbconvert/pull/2088) ([blink1073](https://github.com/blink1073)) - Clean up import [2087](https://github.com/jupyter/nbconvert/pull/2087) ([blink1073](https://github.com/blink1073)) Contributors to this release ([GitHub contributors page for this release](https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-12-21&to=2024-01-01&type=c)) [blink1073](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-12-21..2024-01-01&type=Issues) | [pre-commit-ci](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2023-12-21..2024-01-01&type=Issues) | [ryan-williams](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Aryan-williams+updated%3A2023-12-21..2024-01-01&type=Issues) ``` ### 7.13.1 ``` ([Full Changelog](https://github.com/jupyter/nbconvert/compare/v7.13.0...15b2bc2e215bc3d0ab37508eeeb624ede5da0d36)) Bugs fixed - Restore removed import [2086](https://github.com/jupyter/nbconvert/pull/2086) ([blink1073](https://github.com/blink1073)) Contributors to this release ([GitHub contributors page for this release](https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-12-18&to=2023-12-21&type=c)) [blink1073](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-12-18..2023-12-21&type=Issues) ``` ### 7.13.0 ``` ([Full Changelog](https://github.com/jupyter/nbconvert/compare/v7.12.0...c72ad76251d50c9cf3139e23922e9ef3441e9860)) Enhancements made - Add table, td, tr to allowed list of tags [2083](https://github.com/jupyter/nbconvert/pull/2083) ([yuvipanda](https://github.com/yuvipanda)) Maintenance and upkeep improvements - Remove twitter links that cause linkcheck to fail [2084](https://github.com/jupyter/nbconvert/pull/2084) ([yuvipanda](https://github.com/yuvipanda)) - Update ruff config [2079](https://github.com/jupyter/nbconvert/pull/2079) ([blink1073](https://github.com/blink1073)) - chore: update pre-commit hooks [2076](https://github.com/jupyter/nbconvert/pull/2076) ([pre-commit-ci](https://github.com/pre-commit-ci)) Contributors to this release ([GitHub contributors page for this release](https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-12-04&to=2023-12-18&type=c)) [blink1073](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-12-04..2023-12-18&type=Issues) | [pre-commit-ci](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Apre-commit-ci+updated%3A2023-12-04..2023-12-18&type=Issues) | [yuvipanda](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ayuvipanda+updated%3A2023-12-04..2023-12-18&type=Issues) ``` ### 7.12.0 ``` ([Full Changelog](https://github.com/jupyter/nbconvert/compare/v7.11.0...4f6ab6583de771e74874e72ec88c7fe09a5d4b6b)) Enhancements made - Allow to load config from env. [2075](https://github.com/jupyter/nbconvert/pull/2075) ([Carreau](https://github.com/Carreau)) Maintenance and upkeep improvements - Use ruff on notebooks and update typings [2068](https://github.com/jupyter/nbconvert/pull/2068) ([blink1073](https://github.com/blink1073)) Documentation improvements - update Python version support in docs [2037](https://github.com/jupyter/nbconvert/pull/2037) ([minrk](https://github.com/minrk)) Contributors to this release ([GitHub contributors page for this release](https://github.com/jupyter/nbconvert/graphs/contributors?from=2023-11-06&to=2023-12-04&type=c)) [blink1073](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ablink1073+updated%3A2023-11-06..2023-12-04&type=Issues) | [Carreau](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3ACarreau+updated%3A2023-11-06..2023-12-04&type=Issues) | [gnestor](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Agnestor+updated%3A2023-11-06..2023-12-04&type=Issues) | [minrk](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Aminrk+updated%3A2023-11-06..2023-12-04&type=Issues) | [mpacer](https://github.com/search?q=repo%3Ajupyter%2Fnbconvert+involves%3Ampacer+updated%3A2023-11-06..2023-12-04&type=Issues) ```
Links - PyPI: https://pypi.org/project/nbconvert - Changelog: https://data.safetycli.com/changelogs/nbconvert/

Update numpy from 1.26.1 to 1.26.3.

Changelog ### 1.26.3 ``` discovered after the 1.26.2 release. The most notable changes are the f2py bug fixes. The Python versions supported by this release are 3.9-3.12. Compatibility `f2py` will no longer accept ambiguous `-m` and `.pyf` CLI combinations. When more than one `.pyf` file is passed, an error is raised. When both `-m` and a `.pyf` is passed, a warning is emitted and the `-m` provided name is ignored. Improvements `f2py` now handles `common` blocks which have `kind` specifications from modules. This further expands the usability of intrinsics like `iso_fortran_env` and `iso_c_binding`. Contributors A total of 18 people contributed to this release. People with a \"+\" by their names contributed a patch for the first time. - \DWesl - \Illviljan - Alexander Grund - Andrea Bianchi + - Charles Harris - Daniel Vanzo - Johann Rohwer + - Matti Picus - Nathan Goldbaum - Peter Hawkins - Raghuveer Devulapalli - Ralf Gommers - Rohit Goswami - Sayed Adel - Sebastian Berg - Stefano Rivera + - Thomas A Caswell - matoro Pull requests merged A total of 42 pull requests were merged for this release. - [25130](https://github.com/numpy/numpy/pull/25130): MAINT: prepare 1.26.x for further development - [25188](https://github.com/numpy/numpy/pull/25188): TYP: add None to `__getitem__` in `numpy.array_api` - [25189](https://github.com/numpy/numpy/pull/25189): BLD,BUG: quadmath required where available \[f2py\] - [25190](https://github.com/numpy/numpy/pull/25190): BUG: alpha doesn\'t use REAL(10) - [25191](https://github.com/numpy/numpy/pull/25191): BUG: Fix FP overflow error in division when the divisor is scalar - [25192](https://github.com/numpy/numpy/pull/25192): MAINT: Pin scipy-openblas version. - [25201](https://github.com/numpy/numpy/pull/25201): BUG: Fix f2py to enable use of string optional inout argument - [25202](https://github.com/numpy/numpy/pull/25202): BUG: Fix -fsanitize=alignment issue in numpy/\_core/src/multiarray/arraytypes.c.src - [25203](https://github.com/numpy/numpy/pull/25203): TST: Explicitly pass NumPy path to cython during tests (also\... - [25204](https://github.com/numpy/numpy/pull/25204): BUG: fix issues with `newaxis` and `linalg.solve` in `numpy.array_api` - [25205](https://github.com/numpy/numpy/pull/25205): BUG: Disallow shadowed modulenames - [25217](https://github.com/numpy/numpy/pull/25217): BUG: Handle common blocks with kind specifications from modules - [25218](https://github.com/numpy/numpy/pull/25218): BUG: Fix moving compiled executable to root with f2py -c on Windows - [25219](https://github.com/numpy/numpy/pull/25219): BUG: Fix single to half-precision conversion on PPC64/VSX3 - [25227](https://github.com/numpy/numpy/pull/25227): TST: f2py: fix issue in test skip condition - [25240](https://github.com/numpy/numpy/pull/25240): Revert \"MAINT: Pin scipy-openblas version.\" - [25249](https://github.com/numpy/numpy/pull/25249): MAINT: do not use `long` type - [25377](https://github.com/numpy/numpy/pull/25377): TST: PyPy needs another gc.collect on latest versions - [25378](https://github.com/numpy/numpy/pull/25378): CI: Install Lapack runtime on Cygwin. - [25379](https://github.com/numpy/numpy/pull/25379): MAINT: Bump conda-incubator/setup-miniconda from 2.2.0 to 3.0.1 - [25380](https://github.com/numpy/numpy/pull/25380): BLD: update vendored Meson for AIX shared library fix - [25419](https://github.com/numpy/numpy/pull/25419): MAINT: Init `base` in cpu_avx512_kn - [25420](https://github.com/numpy/numpy/pull/25420): BUG: Fix failing test_features on SapphireRapids - [25422](https://github.com/numpy/numpy/pull/25422): BUG: Fix non-contiguous memory load when ARM/Neon is enabled - [25428](https://github.com/numpy/numpy/pull/25428): MAINT,BUG: Never import distutils above 3.12 \[f2py\] - [25452](https://github.com/numpy/numpy/pull/25452): MAINT: make the import-time check for old Accelerate more specific - [25458](https://github.com/numpy/numpy/pull/25458): BUG: fix macOS version checks for Accelerate support - [25465](https://github.com/numpy/numpy/pull/25465): MAINT: Bump actions/setup-node and larsoner/circleci-artifacts-redirector-action - [25466](https://github.com/numpy/numpy/pull/25466): BUG: avoid seg fault from OOB access in RandomState.set_state() - [25467](https://github.com/numpy/numpy/pull/25467): BUG: Fix two errors related to not checking for failed allocations - [25468](https://github.com/numpy/numpy/pull/25468): BUG: Fix regression with `f2py` wrappers when modules and subroutines\... - [25475](https://github.com/numpy/numpy/pull/25475): BUG: Fix build issues on SPR - [25478](https://github.com/numpy/numpy/pull/25478): BLD: fix uninitialized variable warnings from simd/neon/memory.h - [25480](https://github.com/numpy/numpy/pull/25480): BUG: Handle `iso_c_type` mappings more consistently - [25481](https://github.com/numpy/numpy/pull/25481): BUG: Fix module name bug in signature files \[urgent\] \[f2py\] - [25482](https://github.com/numpy/numpy/pull/25482): BUG: Handle .pyf.src and fix SciPy \[urgent\] - [25483](https://github.com/numpy/numpy/pull/25483): DOC: `f2py` rewrite with `meson` details - [25485](https://github.com/numpy/numpy/pull/25485): BUG: Add external library handling for meson \[f2py\] - [25486](https://github.com/numpy/numpy/pull/25486): MAINT: Run f2py\'s meson backend with the same python that ran\... - [25489](https://github.com/numpy/numpy/pull/25489): MAINT: Update `numpy/f2py/_backends` from main. - [25490](https://github.com/numpy/numpy/pull/25490): MAINT: Easy updates of `f2py/*.py` from main. - [25491](https://github.com/numpy/numpy/pull/25491): MAINT: Update crackfortran.py and f2py2e.py from main Checksums MD5 7660db27715df261948e7f0f13634f16 numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl 98d5b98c822de4bed0cf1b0b8f367192 numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl b71cd0710cec5460292a97a02fa349cd numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0f98a05c92598f849b1be2595f4a52a8 numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b866c6aea8070c0753b776d2b521e875 numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl cfdde5868e469fb27655ea73b0b9593b numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl 2655440d61671b5e32b049d30397c58f numpy-1.26.3-cp310-cp310-win32.whl 7718a5d33344784ca7821f3bdd467550 numpy-1.26.3-cp310-cp310-win_amd64.whl 28e4b2ed9192c392f792d88b3c246d1c numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl fb1ae72749463e2c82f0127699728364 numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl 304dec822b508a1d495917610e7562bf numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2cc0d8b073dfd55946a60ba8ed4369f6 numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c99962375c599501820899c8ccab6960 numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl 47ed42d067ce4863bbf1f40da61ba7d1 numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl 3ab3757255feb54ca3793fb9db226586 numpy-1.26.3-cp311-cp311-win32.whl c33f2a4518bae535645357a08a93be1a numpy-1.26.3-cp311-cp311-win_amd64.whl bea43600aaff3a4d9978611ccfa44198 numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl c678d909ebe737fdabf215d8622ce2a3 numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl 9f21f1875c92425cec1060564b3abb1c numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c44a1998965d45ec136078ee09d880f2 numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9274f5c51fa4f3c8fac5efa3d78acd63 numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl 07c9f8f86f45077febc46c87ebc0b644 numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl a4857b2f7b6a23bca41178bd344bb28a numpy-1.26.3-cp312-cp312-win32.whl 495d9534961d7b10f16fec4515a3d72b numpy-1.26.3-cp312-cp312-win_amd64.whl 6494f2d94fd1f184923a33e634692b5e numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl 515a7314a0ff6aaba8d53a7a1aaa73ab numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl c856adc6a6a78773c43e9c738d662ed5 numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 09848456158a01feff28f88c6106aef1 numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl adec00ea2bc98580a436f82e188c0e2f numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl 718bd35dd0431a6434bb30bf8d91d77d numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl e813aa59cb807efb4a8fee52a6dd41ba numpy-1.26.3-cp39-cp39-win32.whl 08e1b0973d0ae5976b38563eaec1253f numpy-1.26.3-cp39-cp39-win_amd64.whl e8887a14750161709636e9fb87df4f36 numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 0bdb19040525451553fb5758b65caf4c numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b931c14d06cc37d85d63ed1ddd88e875 numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl 1c915dc6c36dd4c674d9379e9470ff8b numpy-1.26.3.tar.gz SHA256 806dd64230dbbfaca8a27faa64e2f414bf1c6622ab78cc4264f7f5f028fee3bf numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl 02f98011ba4ab17f46f80f7f8f1c291ee7d855fcef0a5a98db80767a468c85cd numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl 6d45b3ec2faed4baca41c76617fcdcfa4f684ff7a151ce6fc78ad3b6e85af0a6 numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bdd2b45bf079d9ad90377048e2747a0c82351989a2165821f0c96831b4a2a54b numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 211ddd1e94817ed2d175b60b6374120244a4dd2287f4ece45d49228b4d529178 numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl b1240f767f69d7c4c8a29adde2310b871153df9b26b5cb2b54a561ac85146485 numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl 21a9484e75ad018974a2fdaa216524d64ed4212e418e0a551a2d83403b0531d3 numpy-1.26.3-cp310-cp310-win32.whl 9e1591f6ae98bcfac2a4bbf9221c0b92ab49762228f38287f6eeb5f3f55905ce numpy-1.26.3-cp310-cp310-win_amd64.whl b831295e5472954104ecb46cd98c08b98b49c69fdb7040483aff799a755a7374 numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl 9e87562b91f68dd8b1c39149d0323b42e0082db7ddb8e934ab4c292094d575d6 numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl 8c66d6fec467e8c0f975818c1796d25c53521124b7cfb760114be0abad53a0a2 numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f25e2811a9c932e43943a2615e65fc487a0b6b49218899e62e426e7f0a57eeda numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl af36e0aa45e25c9f57bf684b1175e59ea05d9a7d3e8e87b7ae1a1da246f2767e numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl 51c7f1b344f302067b02e0f5b5d2daa9ed4a721cf49f070280ac202738ea7f00 numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl 7ca4f24341df071877849eb2034948459ce3a07915c2734f1abb4018d9c49d7b numpy-1.26.3-cp311-cp311-win32.whl 39763aee6dfdd4878032361b30b2b12593fb445ddb66bbac802e2113eb8a6ac4 numpy-1.26.3-cp311-cp311-win_amd64.whl a7081fd19a6d573e1a05e600c82a1c421011db7935ed0d5c483e9dd96b99cf13 numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl 12c70ac274b32bc00c7f61b515126c9205323703abb99cd41836e8125ea0043e numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl 7f784e13e598e9594750b2ef6729bcd5a47f6cfe4a12cca13def35e06d8163e3 numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5f24750ef94d56ce6e33e4019a8a4d68cfdb1ef661a52cdaee628a56d2437419 numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 77810ef29e0fb1d289d225cabb9ee6cf4d11978a00bb99f7f8ec2132a84e0166 numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl 8ed07a90f5450d99dad60d3799f9c03c6566709bd53b497eb9ccad9a55867f36 numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl f73497e8c38295aaa4741bdfa4fda1a5aedda5473074369eca10626835445511 numpy-1.26.3-cp312-cp312-win32.whl da4b0c6c699a0ad73c810736303f7fbae483bcb012e38d7eb06a5e3b432c981b numpy-1.26.3-cp312-cp312-win_amd64.whl 1666f634cb3c80ccbd77ec97bc17337718f56d6658acf5d3b906ca03e90ce87f numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl 18c3319a7d39b2c6a9e3bb75aab2304ab79a811ac0168a671a62e6346c29b03f numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl 0b7e807d6888da0db6e7e75838444d62495e2b588b99e90dd80c3459594e857b numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b4d362e17bcb0011738c2d83e0a65ea8ce627057b2fdda37678f4374a382a137 numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b8c275f0ae90069496068c714387b4a0eba5d531aace269559ff2b43655edd58 numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl cc0743f0302b94f397a4a65a660d4cd24267439eb16493fb3caad2e4389bccbb numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl 9bc6d1a7f8cedd519c4b7b1156d98e051b726bf160715b769106661d567b3f03 numpy-1.26.3-cp39-cp39-win32.whl 867e3644e208c8922a3be26fc6bbf112a035f50f0a86497f98f228c50c607bb2 numpy-1.26.3-cp39-cp39-win_amd64.whl 3c67423b3703f8fbd90f5adaa37f85b5794d3366948efe9a5190a5f3a83fc34e numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 46f47ee566d98849323f01b349d58f2557f02167ee301e5e28809a8c0e27a2d0 numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a8474703bffc65ca15853d5fd4d06b18138ae90c17c8d12169968e998e448bb5 numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl 697df43e2b6310ecc9d95f05d5ef20eacc09c7c4ecc9da3f235d39e71b7da1e4 numpy-1.26.3.tar.gz ``` ### 1.26.2 ``` discovered after the 1.26.1 release. The 1.26.release series is the last planned minor release series before NumPy 2.0. The Python versions supported by this release are 3.9-3.12. Contributors A total of 13 people contributed to this release. People with a \"+\" by their names contributed a patch for the first time. - \stefan6419846 - \thalassemia + - Andrew Nelson - Charles Bousseau + - Charles Harris - Marcel Bargull + - Mark Mentovai + - Matti Picus - Nathan Goldbaum - Ralf Gommers - Sayed Adel - Sebastian Berg - William Ayd + Pull requests merged A total of 25 pull requests were merged for this release. - [24814](https://github.com/numpy/numpy/pull/24814): MAINT: align test_dispatcher s390x targets with \_umath_tests_mtargets - [24929](https://github.com/numpy/numpy/pull/24929): MAINT: prepare 1.26.x for further development - [24955](https://github.com/numpy/numpy/pull/24955): ENH: Add Cython enumeration for NPY_FR_GENERIC - [24962](https://github.com/numpy/numpy/pull/24962): REL: Remove Python upper version from the release branch - [24971](https://github.com/numpy/numpy/pull/24971): BLD: Use the correct Python interpreter when running tempita.py - [24972](https://github.com/numpy/numpy/pull/24972): MAINT: Remove unhelpful error replacements from `import_array()` - [24977](https://github.com/numpy/numpy/pull/24977): BLD: use classic linker on macOS, the new one in XCode 15 has\... - [25003](https://github.com/numpy/numpy/pull/25003): BLD: musllinux_aarch64 \[wheel build\] - [25043](https://github.com/numpy/numpy/pull/25043): MAINT: Update mailmap - [25049](https://github.com/numpy/numpy/pull/25049): MAINT: Update meson build infrastructure. - [25071](https://github.com/numpy/numpy/pull/25071): MAINT: Split up .github/workflows to match main - [25083](https://github.com/numpy/numpy/pull/25083): BUG: Backport fix build on ppc64 when the baseline set to Power9\... - [25093](https://github.com/numpy/numpy/pull/25093): BLD: Fix features.h detection for Meson builds \[1.26.x Backport\] - [25095](https://github.com/numpy/numpy/pull/25095): BUG: Avoid intp conversion regression in Cython 3 (backport) - [25107](https://github.com/numpy/numpy/pull/25107): CI: remove obsolete jobs, and move macOS and conda Azure jobs\... - [25108](https://github.com/numpy/numpy/pull/25108): CI: Add linux_qemu action and remove travis testing. - [25112](https://github.com/numpy/numpy/pull/25112): MAINT: Update .spin/cmds.py from main. - [25113](https://github.com/numpy/numpy/pull/25113): DOC: Visually divide main license and bundled licenses in wheels - [25115](https://github.com/numpy/numpy/pull/25115): MAINT: Add missing `noexcept` to shuffle helpers - [25116](https://github.com/numpy/numpy/pull/25116): DOC: Fix license identifier for OpenBLAS - [25117](https://github.com/numpy/numpy/pull/25117): BLD: improve detection of Netlib libblas/libcblas/liblapack - [25118](https://github.com/numpy/numpy/pull/25118): MAINT: Make bitfield integers unsigned - [25119](https://github.com/numpy/numpy/pull/25119): BUG: Make n a long int for np.random.multinomial - [25120](https://github.com/numpy/numpy/pull/25120): BLD: change default of the `allow-noblas` option to true. - [25121](https://github.com/numpy/numpy/pull/25121): BUG: ensure passing `np.dtype` to itself doesn\'t crash Checksums MD5 1a5dc6b5b3bf11ad40a59eedb3b69fa1 numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl 4b741c6dfe4e6e22e34e9c5c788d4f04 numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl 2953687fb26e1dd8a2d1bb7109551fcd numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ea9127a3a03f27fd101c62425c661d8d numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7a6be7c6c1cc3e1ff73f64052fe30677 numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl 4f45d3f69f54fd1638609fde34c33a5c numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl f22f5ea26c86eb126ff502fff75d6c21 numpy-1.26.2-cp310-cp310-win32.whl 49871452488e1a55d15ab54c6f3e546e numpy-1.26.2-cp310-cp310-win_amd64.whl 676740bf60fb1c8f5a6b31e00b9a4e9b numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl 7170545dcc2a38a1c2386a6081043b64 numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl feae1190c73d811e2e7ebcad4baf6edf numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 03131896abade61b77e0f6e53abb988a numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f160632f128a3fd46787aa02d8731fbb numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl 014250db593d589b5533ef7127839c46 numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl fb437346dac24d0cb23f5314db043c8b numpy-1.26.2-cp311-cp311-win32.whl 7359adc233874898ea768cd4aec28bb3 numpy-1.26.2-cp311-cp311-win_amd64.whl 207a678bea75227428e7fb84d4dc457a numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl 302ff6cc047a408cdf21981bd7b26056 numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl 7526faaea58c76aed395c7128dd6e14d numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 28d3b1943d3a8ad4bbb2ae9da0a77cb9 numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d91f5b2bb2c931e41ae7c80ec7509a31 numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl b2504d4239419f012c08fa1eab12f940 numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl 57944ba30adc07f33e83a9b45f5c625a numpy-1.26.2-cp312-cp312-win32.whl fe38cd95bbee405ce0cf51c8753a2676 numpy-1.26.2-cp312-cp312-win_amd64.whl 28e1bc3efaf89cf6f0a2b616c0e16401 numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl 9932ccff54855f12ee24f60528279bf1 numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl b52c1e987074dad100ad234122a397b9 numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1d1bd7e0d2a89ce795a9566a38ed9bb5 numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 01d2abfe8e9b35415efb791ac6c5865e numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl 5a6d6ac287ebd93a221e59590329e202 numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl 4e4e4d8cf661a8d2838ee700fabae87e numpy-1.26.2-cp39-cp39-win32.whl b8e52ecac110471502686abbdf774b78 numpy-1.26.2-cp39-cp39-win_amd64.whl aed2d2914be293f60fedda360b64abf8 numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 6bd88e0f33933445d0e18c1a850f60e0 numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 010aeb2a50af0af1f7ef56f76f8cf463 numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl 8f6446a32e47953a03f8fe8533e21e98 numpy-1.26.2.tar.gz SHA256 3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440 numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl 36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75 numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00 numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523 numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl 22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9 numpy-1.26.2-cp310-cp310-win32.whl 26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919 numpy-1.26.2-cp310-cp310-win_amd64.whl b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841 numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1 numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl 06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7 numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8 numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186 numpy-1.26.2-cp311-cp311-win32.whl 2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d numpy-1.26.2-cp311-cp311-win_amd64.whl a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0 numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl 5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75 numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl 6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7 numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6 numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6 numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl 4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167 numpy-1.26.2-cp312-cp312-win32.whl b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e numpy-1.26.2-cp312-cp312-win_amd64.whl 4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl 1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2 numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl 64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3 numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818 numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210 numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36 numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80 numpy-1.26.2-cp39-cp39-win32.whl 2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060 numpy-1.26.2-cp39-cp39-win_amd64.whl 1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79 numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841 numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea numpy-1.26.2.tar.gz ```
Links - PyPI: https://pypi.org/project/numpy - Changelog: https://data.safetycli.com/changelogs/numpy/ - Homepage: https://numpy.org

Update pandas from 2.1.2 to 2.2.0.

The bot wasn't able to find a changelog for this release. Got an idea?

Links - PyPI: https://pypi.org/project/pandas - Homepage: https://pandas.pydata.org

Update pymdown-extensions from 10.3.1 to 10.7.

Changelog ### 10.7 ``` - **NEW**: Emoji: Update Twemoji and Gemoji data to latest. - **NEW**: Emoji: Due to recent Gemoji update, non-standard emoji are no longer indexed. So emoji such as `:octocat:` are no longer resolved. - **NEW**: Highlight: Added new option `default_lang` which will cause code blocks with no language specifier to be highlighted with the specified default language instead of plain text. This affects indented code blocks and code blocks defined with SuperFences. - **NEW**: InlineHilite: `style_plain_text` can be specified with a language string (in addition to its previous boolean requirement) to treat inline code blocks with no explicit language specifier with a specific default language. ``` ### 10.6 ``` - **NEW**: MagicLink: Allow configuring custom repository providers based off the existing providers. ``` ### 10.5 ``` - **NEW**: Blocks: Admonitions and Details now allow configuring custom block classes and default titles. - **FIX**: Keys: Ensure that Keys does not parse base64 encoded URLs. ``` ### 10.4 ``` - **NEW**: Snippets: Allow PathLike objects for `base_path` to better support interactions with MkDocs. - **FIX**: Block Admonitions: Empty titles should be respected. - **FIX**: Block Details: Empty summary should be respected. ```
Links - PyPI: https://pypi.org/project/pymdown-extensions - Changelog: https://data.safetycli.com/changelogs/pymdown-extensions/

Update scipy from 1.11.3 to 1.12.0.

Changelog ### 1.12.0 ``` many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run your code with ``python -Wd`` and check for ``DeprecationWarning`` s). Our development attention will now shift to bug-fix releases on the `1.12.x` branch, and on adding new features on the main branch. This release requires Python `3.9+` and NumPy `1.22.4` or greater. For running on PyPy, PyPy3 `6.0+` is required. Highlights of this release ================== - Experimental support for the array API standard has been added to part of `scipy.special`, and to all of `scipy.fft` and `scipy.cluster`. There are likely to be bugs and early feedback for usage with CuPy arrays, PyTorch tensors, and other array API compatible libraries is appreciated. Use the ``SCIPY_ARRAY_API`` environment variable for testing. - A new class, ``ShortTimeFFT``, provides a more versatile implementation of the short-time Fourier transform (STFT), its inverse (ISTFT) as well as the (cross-) spectrogram. It utilizes an improved algorithm for calculating the ISTFT. - Several new constructors have been added for sparse arrays, and many operations now additionally support sparse arrays, further facilitating the migration from sparse matrices. - A large portion of the `scipy.stats` API now has improved support for handling ``NaN`` values, masked arrays, and more fine-grained shape-handling. The accuracy and performance of a number of ``stats`` methods have been improved, and a number of new statistical tests and distributions have been added. New features ========== `scipy.cluster` improvements ====================== - Experimental support added for the array API standard; PyTorch tensors, CuPy arrays and array API compatible array libraries are now accepted (GPU support is limited to functions with pure Python implementations). CPU arrays which can be converted to and from NumPy are supported module-wide and returned arrays will match the input type. This behaviour is enabled by setting the ``SCIPY_ARRAY_API`` environment variable before importing ``scipy``. This experimental support is still under development and likely to contain bugs - testing is very welcome. `scipy.fft` improvements =================== - Experimental support added for the array API standard; functions which are part of the ``fft`` array API standard extension module, as well as the Fast Hankel Transforms and the basic FFTs which are not in the extension module, now accept PyTorch tensors, CuPy arrays and array API compatible array libraries. CPU arrays which can be converted to and from NumPy arrays are supported module-wide and returned arrays will match the input type. This behaviour is enabled by setting the ``SCIPY_ARRAY_API`` environment variable before importing ``scipy``. This experimental support is still under development and likely to contain bugs - testing is very welcome. `scipy.integrate` improvements ======================== - Added `scipy.integrate.cumulative_simpson` for cumulative quadrature from sampled data using Simpson's 1/3 rule. `scipy.interpolate` improvements ========================= - New class ``NdBSpline`` represents tensor-product splines in N dimensions. This class only knows how to evaluate a tensor product given coefficients and knot vectors. This way it generalizes ``BSpline`` for 1D data to N-D, and parallels ``NdPPoly`` (which represents N-D tensor product polynomials). Evaluations exploit the localized nature of b-splines. - ``NearestNDInterpolator.__call__`` accepts ``**query_options``, which are passed through to the ``KDTree.query`` call to find nearest neighbors. This allows, for instance, to limit the neighbor search distance and parallelize the query using the ``workers`` keyword. - ``BarycentricInterpolator`` now allows computing the derivatives. - It is now possible to change interpolation values in an existing ``CloughTocher2DInterpolator`` instance, while also saving the barycentric coordinates of interpolation points. `scipy.linalg` improvements ===================== - Access to new low-level LAPACK functions is provided via ``dtgsyl`` and ``stgsyl``. `scipy.ndimage` improvements ======================= `scipy.optimize` improvements ======================= - `scipy.optimize.nnls` is rewritten in Python and now implements the so-called fnnls or fast nnls. - The result object of `scipy.optimize.root` and `scipy.optimize.root_scalar` now reports the method used. - The ``callback`` method of `scipy.optimize.differential_evolution` can now be passed more detailed information via the ``intermediate_results`` keyword parameter. Also, the evolution ``strategy`` now accepts a callable for additional customization. The performance of ``differential_evolution`` has also been improved. - ``minimize`` method ``Newton-CG`` has been made slightly more efficient. - ``minimize`` method ``BFGS`` now accepts an initial estimate for the inverse of the Hessian, which allows for more efficient workflows in some circumstances. The new parameter is ``hess_inv0``. - ``minimize`` methods ``CG``, ``Newton-CG``, and ``BFGS`` now accept parameters ``c1`` and ``c2``, allowing specification of the Armijo and curvature rule parameters, respectively. - ``curve_fit`` performance has improved due to more efficient memoization of the callable function. - ``isotonic_regression`` has been added to allow nonparametric isotonic regression. `scipy.signal` improvements ===================== - ``freqz``, ``freqz_zpk``, and ``group_delay`` are now more accurate when ``fs`` has a default value. - The new class ``ShortTimeFFT`` provides a more versatile implementation of the short-time Fourier transform (STFT), its inverse (ISTFT) as well as the (cross-) spectrogram. It utilizes an improved algorithm for calculating the ISTFT based on dual windows and provides more fine-grained control of the parametrization especially in regard to scaling and phase-shift. Functionality was implemented to ease working with signal and STFT chunks. A section has been added to the "SciPy User Guide" providing algorithmic details. The functions ``stft``, ``istft`` and ``spectrogram`` have been marked as legacy. `scipy.sparse` improvements ====================== - ``sparse.linalg`` iterative solvers ``sparse.linalg.cg``, ``sparse.linalg.cgs``, ``sparse.linalg.bicg``, ``sparse.linalg.bicgstab``, ``sparse.linalg.gmres``, and ``sparse.linalg.qmr`` are rewritten in Python. - Updated vendored SuperLU version to ``6.0.1``, along with a few additional fixes. - Sparse arrays have gained additional constructors: ``eye_array``, ``random_array``, ``block_array``, and ``identity``. ``kron`` and ``kronsum`` have been adjusted to additionally support operation on sparse arrays. - Sparse matrices now support a transpose with ``axes=(1, 0)``, to mirror the ``.T`` method. - ``LaplacianNd`` now allows selection of the largest subset of eigenvalues, and additionally now supports retrieval of the corresponding eigenvectors. The performance of ``LaplacianNd`` has also been improved. - The performance of ``dok_matrix`` and ``dok_array`` has been improved, and their inheritance behavior should be more robust. - ``hstack``, ``vstack``, and ``block_diag`` now work with sparse arrays, and preserve the input sparse type. - A new function, `scipy.sparse.linalg.matrix_power`, has been added, allowing for exponentiation of sparse arrays. `scipy.spatial` improvements ====================== - Two new methods were implemented for ``spatial.transform.Rotation``: ``__pow__`` to raise a rotation to integer or fractional power and ``approx_equal`` to check if two rotations are approximately equal. - The method ``Rotation.align_vectors`` was extended to solve a constrained alignment problem where two vectors are required to be aligned precisely. Also when given a single pair of vectors, the algorithm now returns the rotation with minimal magnitude, which can be considered as a minor backward incompatible change. - A new representation for ``spatial.transform.Rotation`` called Davenport angles is available through ``from_davenport`` and ``as_davenport`` methods. - Performance improvements have been added to ``distance.hamming`` and ``distance.correlation``. - Improved performance of ``SphericalVoronoi`` ``sort_vertices_of_regions`` and two dimensional area calculations. `scipy.special` improvements ====================== - Added `scipy.special.stirling2` for computation of Stirling numbers of the second kind. Both exact calculation and an asymptotic approximation (the default) are supported via ``exact=True`` and ``exact=False`` (the default) respectively. - Added `scipy.special.betaincc` for computation of the complementary incomplete Beta function and `scipy.special.betainccinv` for computation of its inverse. - Improved precision of `scipy.special.betainc` and `scipy.special.betaincinv` - Experimental support added for alternative backends: functions `scipy.special.log_ndtr`, `scipy.special.ndtr`, `scipy.special.ndtri`, `scipy.special.erf`, `scipy.special.erfc`, `scipy.special.i0`, `scipy.special.i0e`, `scipy.special.i1`, `scipy.special.i1e`, `scipy.special.gammaln`, `scipy.special.gammainc`, `scipy.special.gammaincc`, `scipy.special.logit`, and `scipy.special.expit` now accept PyTorch tensors and CuPy arrays. These features are still under development and likely to contain bugs, so they are disabled by default; enable them by setting a ``SCIPY_ARRAY_API`` environment variable to ``1`` before importing ``scipy``. Testing is appreciated! `scipy.stats` improvements ===================== - Added `scipy.stats.quantile_test`, a nonparametric test of whether a hypothesized value is the quantile associated with a specified probability. The ``confidence_interval`` method of the result object gives a confidence interval of the quantile. - `scipy.stats.wasserstein_distance` now computes the Wasserstein distance in the multidimensional case. - `scipy.stats.sampling.FastGeneratorInversion` provides a convenient interface to fast random sampling via numerical inversion of distribution CDFs. - `scipy.stats.geometric_discrepancy` adds geometric/topological discrepancy metrics for random samples. - `scipy.stats.multivariate_normal` now has a ``fit`` method for fitting distribution parameters to data via maximum likelihood estimation. - `scipy.stats.bws_test` performs the Baumgartner-Weiss-Schindler test of whether two-samples were drawn from the same distribution. - `scipy.stats.jf_skew_t` implements the Jones and Faddy skew-t distribution. - `scipy.stats.anderson_ksamp` now supports a permutation version of the test using the ``method`` parameter. - The ``fit`` methods of `scipy.stats.halfcauchy`, `scipy.stats.halflogistic`, and `scipy.stats.halfnorm` are faster and more accurate. - `scipy.stats.beta` ``entropy`` accuracy has been improved for extreme values of distribution parameters. - The accuracy of ``sf`` and/or ``isf`` methods have been improved for several distributions: `scipy.stats.burr`, `scipy.stats.hypsecant`, `scipy.stats.kappa3`, `scipy.stats.loglaplace`, `scipy.stats.lognorm`, `scipy.stats.lomax`, `scipy.stats.pearson3`, `scipy.stats.rdist`, and `scipy.stats.pareto`. - The following functions now support parameters ``axis``, ``nan_policy``, and ``keep_dims``: `scipy.stats.entropy`, `scipy.stats.differential_entropy`, `scipy.stats.variation`, `scipy.stats.ansari`, `scipy.stats.bartlett`, `scipy.stats.levene`, `scipy.stats.fligner`, `scipy.stats.cirmean, `scipy.stats.circvar`, `scipy.stats.circstd`, `scipy.stats.tmean`, `scipy.stats.tvar`, `scipy.stats.tstd`, `scipy.stats.tmin`, `scipy.stats.tmax`, and `scipy.stats.tsem`. - The ``logpdf`` and ``fit`` methods of `scipy.stats.skewnorm` have been improved. - The beta negative binomial distribution is implemented as `scipy.stats.betanbinom`. - The speed of `scipy.stats.invwishart` ``rvs`` and ``logpdf`` have been improved. - A source of intermediate overflow in `scipy.stats.boxcox_normmax` with ``method='mle'`` has been eliminated, and the returned value of ``lmbda`` is constrained such that the transformed data will not overflow. - `scipy.stats.nakagami` ``stats`` is more accurate and reliable. - A source of intermediate overflow in `scipy.norminvgauss.pdf` has been eliminated. - Added support for masked arrays to ``stats.circmean``, ``stats.circvar``, ``stats.circstd``, and ``stats.entropy``. - ``dirichlet`` has gained a new covariance (``cov``) method. - Improved accuracy of ``multivariate_t`` entropy with large degrees of freedom. - ``loggamma`` has an improved ``entropy`` method. Deprecated features =============== - Error messages have been made clearer for objects that don't exist in the public namespace and warnings sharpened for private attributes that are not supposed to be imported at all. - `scipy.signal.cmplx_sort` has been deprecated and will be removed in SciPy 1.14. A replacement you can use is provided in the deprecation message. - Values the the argument ``initial`` of `scipy.integrate.cumulative_trapezoid` other than ``0`` and ``None`` are now deprecated. - `scipy.stats.rvs_ratio_uniforms` is deprecated in favour of `scipy.stats.sampling.RatioUniforms` - `scipy.integrate.quadrature` and `scipy.integrate.romberg` have been deprecated due to accuracy issues and interface shortcomings. They will be removed in SciPy 1.14. Please use `scipy.integrate.quad` instead. - Coinciding with upcoming changes to function signatures (e.g. removal of a deprecated keyword), we are deprecating positional use of keyword arguments for the affected functions, which will raise an error starting with SciPy 1.14. In some cases, this has delayed the originally announced removal date, to give time to respond to the second part of the deprecation. Affected functions are: - ``linalg.{eigh, eigvalsh, pinv}`` - ``integrate.simpson`` - ``signal.{firls, firwin, firwin2, remez}`` - ``sparse.linalg.{bicg, bicgstab, cg, cgs, gcrotmk, gmres, lgmres, minres, qmr, tfqmr}`` - ``special.comb`` - ``stats.kendalltau`` - All wavelet functions have been deprecated, as PyWavelets provides suitable implementations; affected functions are: ``signal.{daub, qmf, cascade, morlet, morlet2, ricker, cwt}`` Expired Deprecations ================ There is an ongoing effort to follow through on long-standing deprecations. The following previously deprecated features are affected: - The ``centered`` keyword of `stats.qmc.LatinHypercube` has been removed. Use ``scrambled=False`` instead of ``centered=True``. Backwards incompatible changes ========================= Other changes =========== - The arguments used to compile and link SciPy are now available via ``show_config``. Authors ====== * Name (commits) * endolith (1) * h-vetinari (29) * Tom Adamczewski (3) + * Anudeep Adiraju (1) + * akeemlh (1) * Alex Amadori (2) + * Raja Yashwanth Avantsa (2) + * Seth Axen (1) + * Ross Barnowski (1) * Dan Barzilay (1) + * Ashish Bastola (1) + * Christoph Baumgarten (2) * Ben Beasley (3) + * Doron Behar (1) * Peter Bell (1) * Sebastian Berg (1) * Ben Boeckel (1) + * David Boetius (1) + * Jake Bowhay (102) * Larry Bradley (1) + * Dietrich Brunn (5) * Evgeni Burovski (101) * Matthias Bussonnier (18) * CJ Carey (6) * Colin Carroll (1) + * Aadya Chinubhai (1) + * Luca Citi (1) * Lucas Colley (140) + * com3dian (1) + * Anirudh Dagar (4) * Danni (1) + * Dieter Werthmüller (1) * John Doe (2) + * Philippe DONNAT (2) + * drestebon (1) + * Thomas Duvernay (1) * elbarso (1) + * emilfrost (2) + * Paul Estano (8) + * Evandro (2) * Franz Király (1) + * Nikita Furin (1) + * gabrielthomsen (1) + * Lukas Geiger (9) + * Artem Glebov (22) + * Caden Gobat (1) * Ralf Gommers (125) * Alexander Goscinski (2) + * Rohit Goswami (2) + * Olivier Grisel (1) * Matt Haberland (243) * Charles Harris (1) * harshilkamdar (1) + * Alon Hovav (2) + * Gert-Ludwig Ingold (1) * Romain Jacob (1) + * jcwhitehead (1) + * Julien Jerphanion (13) * He Jia (1) * JohnWT (1) + * jokasimr (1) + * Evan W Jones (1) * Karen Róbertsdóttir (1) + * Ganesh Kathiresan (1) * Robert Kern (11) * Andrew Knyazev (4) * Uwe L. Korn (1) + * Rishi Kulkarni (1) * Kale Kundert (3) + * Jozsef Kutas (2) * Kyle0 (2) + * Robert Langefeld (1) + * Jeffrey Larson (1) + * Jessy Lauer (1) + * lciti (1) + * Hoang Le (1) + * Antony Lee (5) * Thilo Leitzbach (4) + * LemonBoy (2) + * Ellie Litwack (8) + * Thomas Loke (4) + * Malte Londschien (1) + * Christian Lorentzen (6) * Adam Lugowski (9) + * lutefiskhotdish (1) * mainak33 (1) + * Ben Mares (11) + * mart-mihkel (2) + * Mateusz Sokół (24) + * Nikolay Mayorov (4) * Nicholas McKibben (1) * Melissa Weber Mendonça (7) * Kat Mistberg (2) + * mkiffer (1) + * mocquin (1) + * Nicolas Mokus (2) + * Sturla Molden (1) * Roberto Pastor Muela (3) + * Bijay Nayak (1) + * Andrew Nelson (105) * Praveer Nidamaluri (2) + * Lysandros Nikolaou (2) * Dimitri Papadopoulos Orfanos (7) * Pablo Rodríguez Pérez (1) + * Dimitri Papadopoulos (2) * Tirth Patel (14) * Kyle Paterson (1) + * Paul (4) + * Yann Pellegrini (2) + * Matti Picus (4) * Ilhan Polat (36) * Pranav (1) + * Bharat Raghunathan (1) * Chris Rapson (1) + * Matteo Raso (4) * Tyler Reddy (165) * Martin Reinecke (1) * Tilo Reneau-Cardoso (1) + * resting-dove (2) + * Simon Segerblom Rex (4) * Lucas Roberts (2) * Pamphile Roy (31) * Feras Saad (3) + * Atsushi Sakai (3) * Masahiro Sakai (2) + * Omar Salman (14) * Andrej Savikin (1) + * Daniel Schmitz (52) * Dan Schult (19) * Scott Shambaugh (9) * Sheila-nk (2) + * Mauro Silberberg (3) + * Maciej Skorski (1) + * Laurent Sorber (1) + * Albert Steppi (28) * Kai Striega (1) * Saswat Susmoy (1) + * Alex Szatmary (1) + * Søren Fuglede Jørgensen (3) * othmane tamri (3) + * Ewout ter Hoeven (1) * Will Tirone (1) * TLeitzbach (1) + * Kevin Topolski (1) + * Edgar Andrés Margffoy Tuay (1) * Dipansh Uikey (1) + * Matus Valo (3) * Christian Veenhuis (2) * Nicolas Vetsch (1) + * Isaac Virshup (7) * Hielke Walinga (2) + * Stefan van der Walt (2) * Warren Weckesser (7) * Bernhard M. Wiedemann (4) * Levi John Wolf (1) * Xuefeng Xu (4) + * Rory Yorke (2) * YoussefAli1 (1) + * Irwin Zaid (4) + * Jinzhe Zeng (1) + * JIMMY ZHAO (1) + A total of 161 people contributed to this release. People with a "+" by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete. ``` ### 1.11.4 ``` compared to `1.11.3`. Authors ======= * Name (commits) * Jake Bowhay (2) * Ralf Gommers (4) * Julien Jerphanion (2) * Nikolay Mayorov (2) * Melissa Weber Mendonça (1) * Tirth Patel (1) * Tyler Reddy (22) * Dan Schult (3) * Nicolas Vetsch (1) + A total of 9 people contributed to this release. People with a "+" by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete. ```
Links - PyPI: https://pypi.org/project/scipy - Changelog: https://data.safetycli.com/changelogs/scipy/ - Homepage: https://scipy.org/
pyup-bot commented 9 months ago

Closing this in favor of #386