erikbern / ann-benchmarks

Benchmarks of approximate nearest neighbor libraries in Python
http://ann-benchmarks.com
MIT License
4.99k stars 747 forks source link

Runtime errors for some algorithms on glove-25-angular dataset #301

Closed fcakir closed 2 years ago

fcakir commented 2 years ago

Hello, I've followed these instructions . I wanted to quickly evaluate the algorithms on a single dataset via python run.py --dataset glove-25-angular. However, I get the following errors for Elasticsearch, opensearchknn, FaissIVFPQfs and vald. Is this expected? Do certain algorithms 'fail' for certain datasets? Other algorithms seem to run fine (still running).

I have a Intel(R) Xeon(R) CPU E5-1607 v2 @ 3.00GHz workstation with 128 GB RAM.

Trying to instantiate ann_benchmarks.algorithms.elasticsearch.ElasticsearchScriptScoreQuery(['angular', 25]) Waiting for elasticsearch health endpoint... Elasticsearch is ready got a train set of size (1183514 * 25) got 10000 queries Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 449, in _make_request six.raise_from(e, None) File "", line 3, in raise_from File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 444, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.6/http/client.py", line 1377, in getresponse response.begin() File "/usr/lib/python3.6/http/client.py", line 320, in begin version, status, reason = self._read_status() File "/usr/lib/python3.6/http/client.py", line 281, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/lib/python3.6/socket.py", line 586, in readinto return self._sock.recv_into(b) socket.timeout: timed out

←[31m['angular', 25, {'M': 8, 'efConstruction': 500}] Trying to instantiate ann_benchmarks.algorithms.opensearchknn.OpenSearchKNN(['angular', 25, {'M': 8, 'efConstruction': 500}]) Waiting for elasticsearch health endpoint... Elasticsearch is ready got a train set of size (1183514 * 25) got 10000 queries Uploading data to the Index: os-m-8-efconstruction-500 100%|##########| 1183514/1183514 [03:48<00:00, 5183.86it/s] Force Merge... Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 449, in _make_request six.raise_from(e, None) File "", line 3, in raise_from File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 444, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.6/http/client.py", line 1377, in getresponse response.begin() File "/usr/lib/python3.6/http/client.py", line 320, in begin version, status, reason = self._read_status() File "/usr/lib/python3.6/http/client.py", line 281, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/lib/python3.6/socket.py", line 586, in readinto return self._sock.recv_into(b) socket.timeout: timed out

Trying to instantiate ann_benchmarks.algorithms.faiss.FaissIVFPQfs(['angular', 4096]) got a train set of size (1183514 25) got 10000 queries Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 122, in run algo.fit(X_train) File "/home/app/ann_benchmarks/algorithms/faiss.py", line 99, in fit index = faiss.index_factory(d, factory_string, faiss_metric) File "/root/anaconda3/lib/python3.8/site-packages/faiss/swigfaiss.py", line 5636, in index_factory return _swigfaiss.index_factory(args) RuntimeError: Error in void faiss::ProductQuantizer::set_derived_values() at /opt/conda/conda-bld/faiss-pkg_1623024438023/work/faiss/impl/ProductQuantizer.cpp:186: Error: 'd % M == 0' failed: The dimension of the vector (d) should be a multiple of the number of subquantizers (M) ←[0m

←[31m['angular', 'Float', {'edge': 20, 'searchedge': 60, 'bulk': 100}] Trying to instantiate ann_benchmarks.algorithms.vald.Vald(['angular', 'Float', {'edge': 20, 'searchedge': 60, 'bulk': 100}]) got a train set of size (1183514 * 25) got 10000 queries ←[32m2022-06-01 02:17:32 [INFO]: maxprocs: Leaving GOMAXPROCS=1: CPU quota undefined←[39m ←[33m2022-06-01 02:17:32 [WARN]: failed to setup option : github.com/vdaas/vald/pkg/agent/core/ngt/service/vqueue.WithInsertBufferPoolSize.func1: invalid option, name: insertBufferPoolSize, val: 0←[39m ←[33m2022-06-01 02:17:32 [WARN]: failed to setup option : github.com/vdaas/vald/pkg/agent/core/ngt/service/vqueue.WithDeleteBufferPoolSize.func1: invalid option, name: deleteBufferPoolSize, val: 0←[39m ←[33m2022-06-01 02:17:32 [WARN]: failed to setup option : github.com/vdaas/vald/pkg/agent/core/ngt/handler/grpc.WithStreamConcurrency.func1: invalid option, name: streamConcurrency, val: 0←[39m ←[32m2022-06-01 02:17:32 [INFO]: service agent ngt(version: v0.0.0)starting...←[39m ←[32m2022-06-01 02:17:32 [INFO]: executing daemon pre-start function←[39m ←[32m2022-06-01 02:17:32 [INFO]: executing daemon start function←[39m ←[32m2022-06-01 02:17:32 [INFO]: server agent-grpc executing preStartFunc←[39m ←[32m2022-06-01 02:17:32 [INFO]: gRPC server agent-grpc starting on unix:///var/run/vald.sock←[39m ←[32m2022-06-01 02:17:32 [INFO]: REST server readiness starting on tcp://127.0.0.1:3001←[39m ←[32m2022-06-01 02:17:32 [INFO]: create index operation started, uncommitted indexes = 100←[39m SIGILL: illegal instruction PC=0xedb8ac m=7 sigcode=2 instruction bytes: 0xc4 0xe3 0x7d 0x38 0xc1 0x1 0xc5 0xfe 0x7f 0x43 0x30 0xc5 0xf8 0x77 0x48 0x8d

maumueller commented 2 years ago

For faiss, the dimensionality has divisible by 4. The other three problems are probably implementation specific:

@alexklibisz Can you help with the elasticsearch and opensearchknn? @kmrmt Is this expected to happen for vald on a 25-dimensional dataset?

alexklibisz commented 2 years ago

I can't make much out of these logs. Without more info, I guess I can only say that you should try running them individually (i.e., not all algos at once). If they pass then it's probably some sort of resource constraint that occurs when you run multiple at once. If they fail, then at least the logs will hopefully be more understandable.

erikbern commented 2 years ago

A bunch of algos will fail on every dataset unfortunately – I'd say 80-90%+ will succeed though.

Like @maumueller said, in the case of Glove it might be because the dimensionality is not divisible by 4

fcakir commented 2 years ago

Hi @maumueller, @alexklibisz and @erikbern please find the terminal output. This is again with python run.py --dataset glove-25-angular. I'll update the thread with individual runs.

(ann-env) PS ann-benchmarks> python run.py --dataset glove-25-angular 2022-05-31 16:05:56,364 - annb - INFO - not all docker images available, only: {'ann-benchmarks-elasticsearch', 'ann-benchmarks-sklearn', 'ann-benchmarks-ngt', 'ann-benchmarks-mih', 'ann-benchmarks-rpforest', 'ann-benchmarks-kgraph', 'ann-benchmarks-sptag', 'ann-benchmarks-vald', 'ann-benchmarks-nmslib', 'ann-benchmarks-nearpy', 'ann-benchmarks-dolphinn', 'ann-benchmarks-mrpt', 'ann-benchmarks-n2', 'docker/getting-started', 'ann-benchmarks-hnswlib', 'ann-benchmarks-faiss', 'ann-benchmarks-datasketch', 'ann-benchmarks-elastiknn', 'ann-benchmarks-flann', 'ann-benchmarks-scipy', 'ann-benchmarks-vespa', 'ann-benchmarks-annoy', 'ann-benchmarks-opensearchknn', 'ann-benchmarks', 'ann-benchmarks-pynndescent', 'ann-benchmarks-milvus'} 2022-05-31 16:05:56,364 - annb - INFO - missing docker images: {'ann-benchmarks-diskann', 'ann-benchmarks-scann', 'ann-benchmarks-puffinn', 'ann-benchmarks-vearch', 'ann-benchmarks-diskann_pq'} 2022-05-31 16:05:56,365 - annb - INFO - Not running disabled algorithms [Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[8192, 200], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 10, 20], query_argument_groups=[], disabled=True), Definition(algorithm='ball', constructor='BallTree', module='ann_benchmarks.algorithms.balltree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 10], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 14, 10], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[8192, 10], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[400, 10], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-lsh', constructor='FaissLSH', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 2048], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 16, 40], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-lsh', constructor='FaissLSH', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 512], query_argument_groups=[], disabled=True), Definition(algorithm='DolphinnPy', constructor='DolphinnPy', module='ann_benchmarks.algorithms.dolphinnpy', docker_tag='ann-benchmarks-dolphinn', arguments=[50], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 10, 40], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[400, 1], query_argument_groups=[], disabled=True), Definition(algorithm='ball', constructor='BallTree', module='ann_benchmarks.algorithms.balltree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 1000], query_argument_groups=[], disabled=True), Definition(algorithm='DolphinnPy', constructor='DolphinnPy', module='ann_benchmarks.algorithms.dolphinnpy', docker_tag='ann-benchmarks-dolphinn', arguments=[1000], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[400, 40], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 16, 15], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[16384, 1], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[8192, 40], query_argument_groups=[], disabled=True), Definition(algorithm='DolphinnPy', constructor='DolphinnPy', module='ann_benchmarks.algorithms.dolphinnpy', docker_tag='ann-benchmarks-dolphinn', arguments=[10], query_argument_groups=[], disabled=True), Definition(algorithm='ball', constructor='BallTree', module='ann_benchmarks.algorithms.balltree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 20], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[8192, 1], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 16, 20], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-lsh', constructor='FaissLSH', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 1024], query_argument_groups=[], disabled=True), Definition(algorithm='ball', constructor='BallTree', module='ann_benchmarks.algorithms.balltree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 100], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 16, 10], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[1024, 10], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 14, 5], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-lsh', constructor='FaissLSH', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 128], query_argument_groups=[], disabled=True), Definition(algorithm='ball', constructor='BallTree', module='ann_benchmarks.algorithms.balltree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 40], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[4096, 10], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[16384, 100], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 16, 10], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 16, 25], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 16, 20], query_argument_groups=[], disabled=True), Definition(algorithm='DolphinnPy', constructor='DolphinnPy', module='ann_benchmarks.algorithms.dolphinnpy', docker_tag='ann-benchmarks-dolphinn', arguments=[2000], query_argument_groups=[], disabled=True), Definition(algorithm='ball', constructor='BallTree', module='ann_benchmarks.algorithms.balltree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 200], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[1024, 40], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 16, 30], query_argument_groups=[], disabled=True), Definition(algorithm='ball', constructor='BallTree', module='ann_benchmarks.algorithms.balltree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 400], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[1024, 200], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[4096, 100], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 10, 5], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-lsh', constructor='FaissLSH', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 4096], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 12, 10], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[4096, 40], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 12, 5], query_argument_groups=[], disabled=True), Definition(algorithm='DolphinnPy', constructor='DolphinnPy', module='ann_benchmarks.algorithms.dolphinnpy', docker_tag='ann-benchmarks-dolphinn', arguments=[200], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 10, 10], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[4096, 1], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 14, 20], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[16384, 40], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-lsh', constructor='FaissLSH', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 64], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 14, 40], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 16, 5], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[1024, 100], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 12, 20], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-lsh', constructor='FaissLSH', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 256], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[400, 200], query_argument_groups=[], disabled=True), Definition(algorithm='dummy-algo-st', constructor='DummyAlgoSt', module='ann_benchmarks.algorithms.dummy_algo', docker_tag='ann-benchmarks-sklearn', arguments=['angular'], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-lsh', constructor='FaissLSH', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 32], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[16384, 10], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[8192, 100], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[1024, 1], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[16384, 200], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 12, 40], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 16, 5], query_argument_groups=[], disabled=True), Definition(algorithm='bruteforce', constructor='BruteForce', module='ann_benchmarks.algorithms.bruteforce', docker_tag='ann-benchmarks-sklearn', arguments=['angular'], query_argument_groups=[], disabled=True), Definition(algorithm='elastiknn-exact', constructor='Exact', module='ann_benchmarks.algorithms.elastiknn', docker_tag='ann-benchmarks-elastiknn', arguments=['angular', 25], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[400, 100], query_argument_groups=[], disabled=True), Definition(algorithm='nearpy', constructor='NearPy', module='ann_benchmarks.algorithms.nearpy', docker_tag='ann-benchmarks-nearpy', arguments=['angular', 16, 40], query_argument_groups=[], disabled=True), Definition(algorithm='faiss-gpu', constructor='FaissGPU', module='ann_benchmarks.algorithms.faiss_gpu', docker_tag='ann-benchmarks-faiss', arguments=[4096, 200], query_argument_groups=[], disabled=True), Definition(algorithm='dummy-algo-mt', constructor='DummyAlgoMt', module='ann_benchmarks.algorithms.dummy_algo', docker_tag='ann-benchmarks-sklearn', arguments=['angular'], query_argument_groups=[], disabled=True), Definition(algorithm='DolphinnPy', constructor='DolphinnPy', module='ann_benchmarks.algorithms.dolphinnpy', docker_tag='ann-benchmarks-dolphinn', arguments=[100], query_argument_groups=[], disabled=True)] 2022-05-31 16:05:56,369 - annb - INFO - Order: [Definition(algorithm='ckdtree', constructor='CKDTree', module='ann_benchmarks.algorithms.ckdtree', docker_tag='ann-benchmarks-scipy', arguments=['angular', 20], query_argument_groups=[], disabled=False), Definition(algorithm='elasticsearch', constructor='ElasticsearchScriptScoreQuery', module='ann_benchmarks.algorithms.elasticsearch', docker_tag='ann-benchmarks-elasticsearch', arguments=['angular', 25], query_argument_groups=[], disabled=False), Definition(algorithm='pynndescent', constructor='PyNNDescent', module='ann_benchmarks.algorithms.pynndescent', docker_tag='ann-benchmarks-pynndescent', arguments=['angular', {'n_neighbors': 40, 'diversify_prob': 1.0, 'pruning_degree_multiplier': 1.5, 'leaf_size': 25}], query_argument_groups=[[0.0], [0.02], [0.04], [0.06], [0.08], [0.1], [0.12], [0.14], [0.16]], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.97}, False], query_argument_groups=[], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.5}, False], query_argument_groups=[], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.85}, False], query_argument_groups=[], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.8}, False], query_argument_groups=[], disabled=False), Definition(algorithm='faiss-ivf', constructor='FaissIVF', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 512], query_argument_groups=[[1], [5], [10], [50], [100], [200]], disabled=False), Definition(algorithm='hnswlib', constructor='HnswLib', module='ann_benchmarks.algorithms.hnswlib', docker_tag='ann-benchmarks-hnswlib', arguments=['angular', {'M': 4, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='opensearchknn', constructor='OpenSearchKNN', module='ann_benchmarks.algorithms.opensearchknn', docker_tag='ann-benchmarks-opensearchknn', arguments=['angular', 25, {'M': 8, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='faiss-ivfpqfs', constructor='FaissIVFPQfs', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 4096], query_argument_groups=[[1, 0], [1, 10], [1, 100], [1, 1000], [5, 0], [5, 10], [5, 100], [5, 1000], [10, 0], [10, 10], [10, 100], [10, 1000], [50, 0], [50, 10], [50, 100], [50, 1000], [100, 0], [100, 10], [100, 100], [100, 1000], [200, 0], [200, 10], [200, 100], [200, 1000]], disabled=False), Definition(algorithm='vald(NGT-panng)', constructor='Vald', module='ann_benchmarks.algorithms.vald', docker_tag='ann-benchmarks-vald', arguments=['angular', 'Float', {'edge': 20, 'searchedge': 60, 'bulk': 100}], query_argument_groups=[[0.6], [0.8], [0.9], [1.0], [1.02], [1.05], [1.1], [1.2]], disabled=False), Definition(algorithm='annoy', constructor='Annoy', module='ann_benchmarks.algorithms.annoy', docker_tag='ann-benchmarks-annoy', arguments=['angular', 100], query_argument_groups=[[100], [200], [400], [1000], [2000], [4000], [10000], [20000], [40000], [100000], [200000], [400000]], disabled=False), Definition(algorithm='ckdtree', constructor='CKDTree', module='ann_benchmarks.algorithms.ckdtree', docker_tag='ann-benchmarks-scipy', arguments=['angular', 40], query_argument_groups=[], disabled=False), Definition(algorithm='faiss-ivf', constructor='FaissIVF', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 4096], query_argument_groups=[[1], [5], [10], [50], [100], [200]], disabled=False), Definition(algorithm='pynndescent', constructor='PyNNDescent', module='ann_benchmarks.algorithms.pynndescent', docker_tag='ann-benchmarks-pynndescent', arguments=['angular', {'n_neighbors': 80, 'diversify_prob': 1.0, 'pruning_degree_multiplier': 2.0, 'leaf_size': 20}], query_argument_groups=[[0.0], [0.02], [0.04], [0.08], [0.12], [0.16], [0.2], [0.24]], disabled=False), Definition(algorithm='hnsw(vespa)', constructor='VespaHnsw', module='ann_benchmarks.algorithms.vespa', docker_tag='ann-benchmarks-vespa', arguments=['angular', 25, {'M': 12, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='SW-graph(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'sw-graph', {'NN': 3}, False], query_argument_groups=[[120], [80], [60], [40], [20], [10], [8], [4], [2]], disabled=False), Definition(algorithm='hnsw(vespa)', constructor='VespaHnsw', module='ann_benchmarks.algorithms.vespa', docker_tag='ann-benchmarks-vespa', arguments=['angular', 25, {'M': 24, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[10, 3], query_argument_groups=[], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[100, 10], query_argument_groups=[], disabled=False), Definition(algorithm='n2', constructor='N2', module='ann_benchmarks.algorithms.n2', docker_tag='ann-benchmarks-n2', arguments=['angular', {'M': 48, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[400, 40], query_argument_groups=[], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_SQ8', 300], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[400, 100], query_argument_groups=[], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[3, 40], query_argument_groups=[], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_FLAT', 100], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='hnsw(vespa)', constructor='VespaHnsw', module='ann_benchmarks.algorithms.vespa', docker_tag='ann-benchmarks-vespa', arguments=['angular', 25, {'M': 8, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='hnsw(faiss)', constructor='FaissHNSW', module='ann_benchmarks.algorithms.faiss_hnsw', docker_tag='ann-benchmarks-faiss', arguments=['angular', {'M': 16, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='kd', constructor='KDTree', module='ann_benchmarks.algorithms.kdtree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 1000], query_argument_groups=[], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_FLAT', 1000], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[3, 3], query_argument_groups=[], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.95}, False], query_argument_groups=[], disabled=False), Definition(algorithm='flann', constructor='FLANN', module='ann_benchmarks.algorithms.flann', docker_tag='ann-benchmarks-flann', arguments=['angular', 0.97], query_argument_groups=[], disabled=False), Definition(algorithm='hnsw(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'hnsw', {'M': 48, 'post': 2, 'efConstruction': 800}, False], query_argument_groups=[[50], [70], [90], [120], [160], [200], [400], [600], [700], [800], [1000], [1400], [1600], [2000]], disabled=False), Definition(algorithm='pynndescent', constructor='PyNNDescent', module='ann_benchmarks.algorithms.pynndescent', docker_tag='ann-benchmarks-pynndescent', arguments=['angular', {'n_neighbors': 80, 'diversify_prob': 0.25, 'pruning_degree_multiplier': 2.0, 'leaf_size': 30}], query_argument_groups=[[0.08], [0.12], [0.16], [0.2], [0.24], [0.28], [0.32], [0.36]], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_SQ8', 10000], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[100, 40], query_argument_groups=[], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_FLAT', 3000], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='hnswlib', constructor='HnswLib', module='ann_benchmarks.algorithms.hnswlib', docker_tag='ann-benchmarks-hnswlib', arguments=['angular', {'M': 36, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='faiss-ivf', constructor='FaissIVF', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 1024], query_argument_groups=[[1], [5], [10], [50], [100], [200]], disabled=False), Definition(algorithm='flann', constructor='FLANN', module='ann_benchmarks.algorithms.flann', docker_tag='ann-benchmarks-flann', arguments=['angular', 0.2], query_argument_groups=[], disabled=False), Definition(algorithm='n2', constructor='N2', module='ann_benchmarks.algorithms.n2', docker_tag='ann-benchmarks-n2', arguments=['angular', {'M': 96, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='pynndescent', constructor='PyNNDescent', module='ann_benchmarks.algorithms.pynndescent', docker_tag='ann-benchmarks-pynndescent', arguments=['angular', {'n_neighbors': 120, 'diversify_prob': 0.125, 'pruning_degree_multiplier': 2.5, 'leaf_size': 35}], query_argument_groups=[[0.16], [0.2], [0.24], [0.28], [0.32], [0.36]], disabled=False), Definition(algorithm='hnsw(faiss)', constructor='FaissHNSW', module='ann_benchmarks.algorithms.faiss_hnsw', docker_tag='ann-benchmarks-faiss', arguments=['angular', {'M': 96, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='hnswlib', constructor='HnswLib', module='ann_benchmarks.algorithms.hnswlib', docker_tag='ann-benchmarks-hnswlib', arguments=['angular', {'M': 12, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='annoy', constructor='Annoy', module='ann_benchmarks.algorithms.annoy', docker_tag='ann-benchmarks-annoy', arguments=['angular', 400], query_argument_groups=[[100], [200], [400], [1000], [2000], [4000], [10000], [20000], [40000], [100000], [200000], [400000]], disabled=False), Definition(algorithm='NGT-onng', constructor='ONNG', module='ann_benchmarks.algorithms.onng_ngt', docker_tag='ann-benchmarks-ngt', arguments=['angular', 'Float', 0.1, {'edge': 100, 'outdegree': 10, 'indegree': 120, 'tree': False, 'refine': True}], query_argument_groups=[[[0.995, 40]], [[0.998, 40]], [[1.0, 40]], [[1.005, 40]], [[1.01, 40]], [[1.015, 40]], [[1.02, 40]]], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.4}, False], query_argument_groups=[], disabled=False), Definition(algorithm='NGT-panng', constructor='PANNG', module='ann_benchmarks.algorithms.panng_ngt', docker_tag='ann-benchmarks-ngt', arguments=['angular', 'Float', {'edge': 20, 'pathadj': 40, 'searchedge': 60}], query_argument_groups=[[0.6], [0.8], [0.9], [1.0], [1.02], [1.05], [1.1], [1.2]], disabled=False), Definition(algorithm='pynndescent', constructor='PyNNDescent', module='ann_benchmarks.algorithms.pynndescent', docker_tag='ann-benchmarks-pynndescent', arguments=['angular', {'n_neighbors': 40, 'diversify_prob': 0.5, 'pruning_degree_multiplier': 1.5, 'leaf_size': 25}], query_argument_groups=[[0.0], [0.02], [0.04], [0.06], [0.08], [0.1], [0.12], [0.14], [0.16]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[3, 100], query_argument_groups=[], disabled=False), Definition(algorithm='mrpt', constructor='MRPT', module='ann_benchmarks.algorithms.mrpt', docker_tag='ann-benchmarks-mrpt', arguments=['angular', 10], query_argument_groups=[[0.1], [0.2], [0.3], [0.4], [0.5], [0.6], [0.7], [0.8], [0.85], [0.9], [0.925], [0.95], [0.97], [0.98], [0.99], [0.995]], disabled=False), Definition(algorithm='hnswlib', constructor='HnswLib', module='ann_benchmarks.algorithms.hnswlib', docker_tag='ann-benchmarks-hnswlib', arguments=['angular', {'M': 16, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.6}, False], query_argument_groups=[], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.9}, False], query_argument_groups=[], disabled=False), Definition(algorithm='hnsw(faiss)', constructor='FaissHNSW', module='ann_benchmarks.algorithms.faiss_hnsw', docker_tag='ann-benchmarks-faiss', arguments=['angular', {'M': 12, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='opensearchknn', constructor='OpenSearchKNN', module='ann_benchmarks.algorithms.opensearchknn', docker_tag='ann-benchmarks-opensearchknn', arguments=['angular', 25, {'M': 16, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='hnsw(faiss)', constructor='FaissHNSW', module='ann_benchmarks.algorithms.faiss_hnsw', docker_tag='ann-benchmarks-faiss', arguments=['angular', {'M': 8, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='faiss-ivf', constructor='FaissIVF', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 2048], query_argument_groups=[[1], [5], [10], [50], [100], [200]], disabled=False), Definition(algorithm='opensearchknn', constructor='OpenSearchKNN', module='ann_benchmarks.algorithms.opensearchknn', docker_tag='ann-benchmarks-opensearchknn', arguments=['angular', 25, {'M': 24, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='ckdtree', constructor='CKDTree', module='ann_benchmarks.algorithms.ckdtree', docker_tag='ann-benchmarks-scipy', arguments=['angular', 100], query_argument_groups=[], disabled=False), Definition(algorithm='flann', constructor='FLANN', module='ann_benchmarks.algorithms.flann', docker_tag='ann-benchmarks-flann', arguments=['angular', 0.95], query_argument_groups=[], disabled=False), Definition(algorithm='hnswlib', constructor='HnswLib', module='ann_benchmarks.algorithms.hnswlib', docker_tag='ann-benchmarks-hnswlib', arguments=['angular', {'M': 48, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='hnswlib', constructor='HnswLib', module='ann_benchmarks.algorithms.hnswlib', docker_tag='ann-benchmarks-hnswlib', arguments=['angular', {'M': 24, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[10, 10], query_argument_groups=[], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[10, 100], query_argument_groups=[], disabled=False), Definition(algorithm='hnsw(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'hnsw', {'M': 20, 'post': 0, 'efConstruction': 800}, False], query_argument_groups=[[2], [5], [10], [15], [20], [30], [40], [50], [70], [80]], disabled=False), Definition(algorithm='n2', constructor='N2', module='ann_benchmarks.algorithms.n2', docker_tag='ann-benchmarks-n2', arguments=['angular', {'M': 64, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='pynndescent', constructor='PyNNDescent', module='ann_benchmarks.algorithms.pynndescent', docker_tag='ann-benchmarks-pynndescent', arguments=['angular', {'n_neighbors': 20, 'diversify_prob': 1.0, 'pruning_degree_multiplier': 0.5, 'leaf_size': 20}], query_argument_groups=[[0.0], [0.02], [0.04], [0.06], [0.08], [0.1], [0.12]], disabled=False), Definition(algorithm='ckdtree', constructor='CKDTree', module='ann_benchmarks.algorithms.ckdtree', docker_tag='ann-benchmarks-scipy', arguments=['angular', 400], query_argument_groups=[], disabled=False), Definition(algorithm='NGT-qg', constructor='QG', module='ann_benchmarks.algorithms.qg_ngt', docker_tag='ann-benchmarks-ngt', arguments=['angular', 'Float', 0.1, {'edge': 100, 'outdegree': 64, 'indegree': 120, 'max_edge': 96}], query_argument_groups=[[[1.2, 0.9]], [[1.2, 0.95]], [[1.2, 0.98]], [[1.2, 1.0]], [[1.2, 1.02]], [[1.5, 0.9]], [[1.5, 0.95]], [[1.5, 0.98]], [[1.5, 1.0]], [[1.5, 1.02]], [[2.0, 0.9]], [[2.0, 0.95]], [[2.0, 0.98]], [[2.0, 1.0]], [[2.0, 1.02]], [[3.0, 0.9]], [[3.0, 0.95]], [[3.0, 0.98]], [[3.0, 1.0]], [[3.0, 1.02]], [[5, 1.0]], [[10, 1.0]], [[20, 1.0]], [[2, 1.04]], [[3, 1.04]], [[5, 1.04]], [[8, 1.04]]], disabled=False), Definition(algorithm='pynndescent', constructor='PyNNDescent', module='ann_benchmarks.algorithms.pynndescent', docker_tag='ann-benchmarks-pynndescent', arguments=['angular', {'n_neighbors': 120, 'diversify_prob': 1.0, 'pruning_degree_multiplier': 2.5, 'leaf_size': 20}], query_argument_groups=[[0.0], [0.04], [0.08], [0.16], [0.2], [0.24], [0.28], [0.32]], disabled=False), Definition(algorithm='annoy', constructor='Annoy', module='ann_benchmarks.algorithms.annoy', docker_tag='ann-benchmarks-annoy', arguments=['angular', 200], query_argument_groups=[[100], [200], [400], [1000], [2000], [4000], [10000], [20000], [40000], [100000], [200000], [400000]], disabled=False), Definition(algorithm='opensearchknn', constructor='OpenSearchKNN', module='ann_benchmarks.algorithms.opensearchknn', docker_tag='ann-benchmarks-opensearchknn', arguments=['angular', 25, {'M': 36, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='hnsw(vespa)', constructor='VespaHnsw', module='ann_benchmarks.algorithms.vespa', docker_tag='ann-benchmarks-vespa', arguments=['angular', 25, {'M': 64, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[100, 400], query_argument_groups=[], disabled=False), Definition(algorithm='hnsw(faiss)', constructor='FaissHNSW', module='ann_benchmarks.algorithms.faiss_hnsw', docker_tag='ann-benchmarks-faiss', arguments=['angular', {'M': 4, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[40, 400], query_argument_groups=[], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[400, 400], query_argument_groups=[], disabled=False), Definition(algorithm='hnsw(vespa)', constructor='VespaHnsw', module='ann_benchmarks.algorithms.vespa', docker_tag='ann-benchmarks-vespa', arguments=['angular', 25, {'M': 16, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[40, 10], query_argument_groups=[], disabled=False), Definition(algorithm='hnswlib', constructor='HnswLib', module='ann_benchmarks.algorithms.hnswlib', docker_tag='ann-benchmarks-hnswlib', arguments=['angular', {'M': 96, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_FLAT', 30000], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='kd', constructor='KDTree', module='ann_benchmarks.algorithms.kdtree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 10], query_argument_groups=[], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[400, 10], query_argument_groups=[], disabled=False), Definition(algorithm='faiss-ivf', constructor='FaissIVF', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 32], query_argument_groups=[[1], [5], [10], [50], [100], [200]], disabled=False), Definition(algorithm='faiss-ivfpqfs', constructor='FaissIVFPQfs', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 1204], query_argument_groups=[[1, 0], [1, 10], [1, 100], [1, 1000], [5, 0], [5, 10], [5, 100], [5, 1000], [10, 0], [10, 10], [10, 100], [10, 1000], [50, 0], [50, 10], [50, 100], [50, 1000], [100, 0], [100, 10], [100, 100], [100, 1000], [200, 0], [200, 10], [200, 100], [200, 1000]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[100, 100], query_argument_groups=[], disabled=False), Definition(algorithm='SW-graph(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'sw-graph', {'NN': 30}, False], query_argument_groups=[[700], [650], [550], [450], [350], [275], [200], [150], [120], [80], [50], [30]], disabled=False), Definition(algorithm='kd', constructor='KDTree', module='ann_benchmarks.algorithms.kdtree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 100], query_argument_groups=[], disabled=False), Definition(algorithm='bruteforce-blas', constructor='BruteForceBLAS', module='ann_benchmarks.algorithms.bruteforce', docker_tag='ann-benchmarks-sklearn', arguments=['angular'], query_argument_groups=[], disabled=False), Definition(algorithm='flann', constructor='FLANN', module='ann_benchmarks.algorithms.flann', docker_tag='ann-benchmarks-flann', arguments=['angular', 0.8], query_argument_groups=[], disabled=False), Definition(algorithm='hnsw(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'hnsw', {'M': 32, 'post': 2, 'efConstruction': 800}, False], query_argument_groups=[[10], [20], [30], [40], [50], [60], [70], [80], [90], [100], [120], [140], [160], [200], [300], [400], [600], [700], [800], [1000], [1200], [1400], [1600], [2000]], disabled=False), Definition(algorithm='hnsw(faiss)', constructor='FaissHNSW', module='ann_benchmarks.algorithms.faiss_hnsw', docker_tag='ann-benchmarks-faiss', arguments=['angular', {'M': 64, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='pynndescent', constructor='PyNNDescent', module='ann_benchmarks.algorithms.pynndescent', docker_tag='ann-benchmarks-pynndescent', arguments=['angular', {'n_neighbors': 20, 'diversify_prob': 1.0, 'pruning_degree_multiplier': 1.0, 'leaf_size': 20}], query_argument_groups=[[0.0], [0.02], [0.04], [0.06], [0.08], [0.1], [0.12]], disabled=False), Definition(algorithm='kd', constructor='KDTree', module='ann_benchmarks.algorithms.kdtree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 40], query_argument_groups=[], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[3, 400], query_argument_groups=[], disabled=False), Definition(algorithm='faiss-ivfpqfs', constructor='FaissIVFPQfs', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 2048], query_argument_groups=[[1, 0], [1, 10], [1, 100], [1, 1000], [5, 0], [5, 10], [5, 100], [5, 1000], [10, 0], [10, 10], [10, 100], [10, 1000], [50, 0], [50, 10], [50, 100], [50, 1000], [100, 0], [100, 10], [100, 100], [100, 1000], [200, 0], [200, 10], [200, 100], [200, 1000]], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_SQ8', 100], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[100, 3], query_argument_groups=[], disabled=False), Definition(algorithm='n2', constructor='N2', module='ann_benchmarks.algorithms.n2', docker_tag='ann-benchmarks-n2', arguments=['angular', {'M': 4, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='n2', constructor='N2', module='ann_benchmarks.algorithms.n2', docker_tag='ann-benchmarks-n2', arguments=['angular', {'M': 36, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='flann', constructor='FLANN', module='ann_benchmarks.algorithms.flann', docker_tag='ann-benchmarks-flann', arguments=['angular', 0.5], query_argument_groups=[], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_FLAT', 10000], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.1}, False], query_argument_groups=[], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_SQ8', 1000], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='SW-graph(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'sw-graph', {'NN': 15}, False], query_argument_groups=[[80], [50], [30], [20]], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_SQ8', 30000], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.3}, False], query_argument_groups=[], disabled=False), Definition(algorithm='kgraph', constructor='KGraph', module='ann_benchmarks.algorithms.kgraph', docker_tag='ann-benchmarks-kgraph', arguments=['angular', {'reverse': -1, 'K': 200, 'L': 300, 'S': 20}, False], query_argument_groups=[[1], [2], [3], [4], [5], [10], [20], [30], [40], [50], [60], [70], [80], [90], [100]], disabled=False), Definition(algorithm='n2', constructor='N2', module='ann_benchmarks.algorithms.n2', docker_tag='ann-benchmarks-n2', arguments=['angular', {'M': 24, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[3, 10], query_argument_groups=[], disabled=False), Definition(algorithm='opensearchknn', constructor='OpenSearchKNN', module='ann_benchmarks.algorithms.opensearchknn', docker_tag='ann-benchmarks-opensearchknn', arguments=['angular', 25, {'M': 4, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='ckdtree', constructor='CKDTree', module='ann_benchmarks.algorithms.ckdtree', docker_tag='ann-benchmarks-scipy', arguments=['angular', 10], query_argument_groups=[], disabled=False), Definition(algorithm='hnsw(faiss)', constructor='FaissHNSW', module='ann_benchmarks.algorithms.faiss_hnsw', docker_tag='ann-benchmarks-faiss', arguments=['angular', {'M': 36, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='faiss-ivfpqfs', constructor='FaissIVFPQfs', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 512], query_argument_groups=[[1, 0], [1, 10], [1, 100], [1, 1000], [5, 0], [5, 10], [5, 100], [5, 1000], [10, 0], [10, 10], [10, 100], [10, 1000], [50, 0], [50, 10], [50, 100], [50, 1000], [100, 0], [100, 10], [100, 100], [100, 1000], [200, 0], [200, 10], [200, 100], [200, 1000]], disabled=False), Definition(algorithm='n2', constructor='N2', module='ann_benchmarks.algorithms.n2', docker_tag='ann-benchmarks-n2', arguments=['angular', {'M': 16, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='n2', constructor='N2', module='ann_benchmarks.algorithms.n2', docker_tag='ann-benchmarks-n2', arguments=['angular', {'M': 12, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[40, 100], query_argument_groups=[], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.2}, False], query_argument_groups=[], disabled=False), Definition(algorithm='hnsw(vespa)', constructor='VespaHnsw', module='ann_benchmarks.algorithms.vespa', docker_tag='ann-benchmarks-vespa', arguments=['angular', 25, {'M': 36, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='faiss-ivf', constructor='FaissIVF', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 256], query_argument_groups=[[1], [5], [10], [50], [100], [200]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[40, 3], query_argument_groups=[], disabled=False), Definition(algorithm='sptag', constructor='Sptag', module='ann_benchmarks.algorithms.sptag', docker_tag='ann-benchmarks-sptag', arguments=['angular', 'KDT'], query_argument_groups=[[100], [200], [400], [1000], [2000], [4000]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[40, 40], query_argument_groups=[], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_FLAT', 300], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='kd', constructor='KDTree', module='ann_benchmarks.algorithms.kdtree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 400], query_argument_groups=[], disabled=False), Definition(algorithm='faiss-ivf', constructor='FaissIVF', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 8192], query_argument_groups=[[1], [5], [10], [50], [100], [200]], disabled=False), Definition(algorithm='hnswlib', constructor='HnswLib', module='ann_benchmarks.algorithms.hnswlib', docker_tag='ann-benchmarks-hnswlib', arguments=['angular', {'M': 8, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='hnsw(vespa)', constructor='VespaHnsw', module='ann_benchmarks.algorithms.vespa', docker_tag='ann-benchmarks-vespa', arguments=['angular', 25, {'M': 48, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='hnsw(faiss)', constructor='FaissHNSW', module='ann_benchmarks.algorithms.faiss_hnsw', docker_tag='ann-benchmarks-faiss', arguments=['angular', {'M': 24, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='ckdtree', constructor='CKDTree', module='ann_benchmarks.algorithms.ckdtree', docker_tag='ann-benchmarks-scipy', arguments=['angular', 200], query_argument_groups=[], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.99}, False], query_argument_groups=[], disabled=False), Definition(algorithm='n2', constructor='N2', module='ann_benchmarks.algorithms.n2', docker_tag='ann-benchmarks-n2', arguments=['angular', {'M': 8, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='hnsw(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'hnsw', {'M': 12, 'post': 0, 'efConstruction': 800}, False], query_argument_groups=[[1], [2], [5], [10], [15], [20], [30], [40], [50], [70], [80]], disabled=False), Definition(algorithm='flann', constructor='FLANN', module='ann_benchmarks.algorithms.flann', docker_tag='ann-benchmarks-flann', arguments=['angular', 0.9], query_argument_groups=[], disabled=False), Definition(algorithm='kd', constructor='KDTree', module='ann_benchmarks.algorithms.kdtree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 200], query_argument_groups=[], disabled=False), Definition(algorithm='hnsw(vespa)', constructor='VespaHnsw', module='ann_benchmarks.algorithms.vespa', docker_tag='ann-benchmarks-vespa', arguments=['angular', 25, {'M': 4, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='BallTree(nmslib)', constructor='NmslibReuseIndex', module='ann_benchmarks.algorithms.nmslib', docker_tag='ann-benchmarks-nmslib', arguments=['angular', 'vptree', {'tuneK': 10, 'desiredRecall': 0.7}, False], query_argument_groups=[], disabled=False), Definition(algorithm='hnsw(vespa)', constructor='VespaHnsw', module='ann_benchmarks.algorithms.vespa', docker_tag='ann-benchmarks-vespa', arguments=['angular', 25, {'M': 96, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='faiss-ivf', constructor='FaissIVF', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 64], query_argument_groups=[[1], [5], [10], [50], [100], [200]], disabled=False), Definition(algorithm='sptag', constructor='Sptag', module='ann_benchmarks.algorithms.sptag', docker_tag='ann-benchmarks-sptag', arguments=['angular', 'BKT'], query_argument_groups=[[100], [200], [400], [1000], [2000], [4000]], disabled=False), Definition(algorithm='milvus', constructor='Milvus', module='ann_benchmarks.algorithms.milvus', docker_tag='ann-benchmarks-milvus', arguments=['angular', 'IVF_SQ8', 3000], query_argument_groups=[[1], [3], [10], [30], [100], [300]], disabled=False), Definition(algorithm='opensearchknn', constructor='OpenSearchKNN', module='ann_benchmarks.algorithms.opensearchknn', docker_tag='ann-benchmarks-opensearchknn', arguments=['angular', 25, {'M': 12, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='ckdtree', constructor='CKDTree', module='ann_benchmarks.algorithms.ckdtree', docker_tag='ann-benchmarks-scipy', arguments=['angular', 1000], query_argument_groups=[], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[400, 3], query_argument_groups=[], disabled=False), Definition(algorithm='opensearchknn', constructor='OpenSearchKNN', module='ann_benchmarks.algorithms.opensearchknn', docker_tag='ann-benchmarks-opensearchknn', arguments=['angular', 25, {'M': 48, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='hnsw(faiss)', constructor='FaissHNSW', module='ann_benchmarks.algorithms.faiss_hnsw', docker_tag='ann-benchmarks-faiss', arguments=['angular', {'M': 48, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[10, 40], query_argument_groups=[], disabled=False), Definition(algorithm='hnswlib', constructor='HnswLib', module='ann_benchmarks.algorithms.hnswlib', docker_tag='ann-benchmarks-hnswlib', arguments=['angular', {'M': 64, 'efConstruction': 500}], query_argument_groups=[[10], [20], [40], [80], [120], [200], [400], [600], [800]], disabled=False), Definition(algorithm='kd', constructor='KDTree', module='ann_benchmarks.algorithms.kdtree', docker_tag='ann-benchmarks-sklearn', arguments=['angular', 20], query_argument_groups=[], disabled=False), Definition(algorithm='NGT-onng', constructor='ONNG', module='ann_benchmarks.algorithms.onng_ngt', docker_tag='ann-benchmarks-ngt', arguments=['angular', 'Float', 0.1, {'edge': 100, 'outdegree': 10, 'indegree': 120}], query_argument_groups=[[[0.6, -2]], [[0.9, -2]], [[1.0, -2]], [[1.02, -2]], [[1.03, -2]], [[1.04, -2]], [[1.05, -2]], [[1.07, -2]], [[1.1, -2]], [[1.2, -2]]], disabled=False), Definition(algorithm='faiss-ivf', constructor='FaissIVF', module='ann_benchmarks.algorithms.faiss', docker_tag='ann-benchmarks-faiss', arguments=['angular', 128], query_argument_groups=[[1], [5], [10], [50], [100], [200]], disabled=False), Definition(algorithm='rpforest', constructor='RPForest', module='ann_benchmarks.algorithms.rpforest', docker_tag='ann-benchmarks-rpforest', arguments=[10, 400], query_argument_groups=[], disabled=False)] ←[31m Starting Elasticsearch Server sysctl: setting key "vm.max_map_count": Read-only file system ...done. ['angular', 25] Trying to instantiate ann_benchmarks.algorithms.elasticsearch.ElasticsearchScriptScoreQuery(['angular', 25]) Waiting for elasticsearch health endpoint... Elasticsearch is ready got a train set of size (1183514 25) got 10000 queries Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 449, in _make_request six.raise_from(e, None) File "", line 3, in raise_from File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 444, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.6/http/client.py", line 1377, in getresponse response.begin() File "/usr/lib/python3.6/http/client.py", line 320, in begin version, status, reason = self._read_status() File "/usr/lib/python3.6/http/client.py", line 281, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/lib/python3.6/socket.py", line 586, in readinto return self._sock.recv_into(b) socket.timeout: timed out

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/http_urllib3.py", line 246, in perform_request method, url, body, retries=Retry(False), headers=request_headers, **kw File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 786, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/usr/local/lib/python3.6/dist-packages/urllib3/util/retry.py", line 525, in increment raise six.reraise(type(error), error, _stacktrace) File "/usr/local/lib/python3.6/dist-packages/urllib3/packages/six.py", line 770, in reraise raise value File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 710, in urlopen chunked=chunked, File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 451, in _make_request self._raise_timeout(err=e, url=url, timeout_value=read_timeout) File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 341, in _raise_timeout self, url, "Read timed out. (read timeout=%s)" % timeout_value urllib3.exceptions.ReadTimeoutError: HTTPConnectionPool(host='localhost', port=9200): Read timed out. (read timeout=10)

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 122, in run algo.fit(X_train) File "/home/app/ann_benchmarks/algorithms/elasticsearch.py", line 79, in fit self.es.indices.forcemerge(self.index, max_num_segments=1) File "/usr/local/lib/python3.6/dist-packages/elasticsearch/client/utils.py", line 152, in _wrapped return func(*args, params=params, headers=headers, *kwargs) File "/usr/local/lib/python3.6/dist-packages/elasticsearch/client/indices.py", line 1088, in forcemerge "POST", _make_path(index, "_forcemerge"), params=params, headers=headers File "/usr/local/lib/python3.6/dist-packages/elasticsearch/transport.py", line 392, in perform_request raise e File "/usr/local/lib/python3.6/dist-packages/elasticsearch/transport.py", line 365, in perform_request timeout=timeout, File "/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/http_urllib3.py", line 257, in perform_request raise ConnectionTimeout("TIMEOUT", str(e), e) elasticsearch.exceptions.ConnectionTimeout: ConnectionTimeout caused by - ReadTimeoutError(HTTPConnectionPool(host='localhost', port=9200): Read timed out. (read timeout=10)) ←[0m Child process for container 958d376b57returned exit code 1 with message None ←[31m['angular', 25, {'M': 8, 'efConstruction': 500}] Trying to instantiate ann_benchmarks.algorithms.opensearchknn.OpenSearchKNN(['angular', 25, {'M': 8, 'efConstruction': 500}]) Waiting for elasticsearch health endpoint... Elasticsearch is ready got a train set of size (1183514 25) got 10000 queries Uploading data to the Index: os-m-8-efconstruction-500 100%|##########| 1183514/1183514 [03:48<00:00, 5183.86it/s] Force Merge... Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 449, in _make_request six.raise_from(e, None) File "", line 3, in raise_from File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 444, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.6/http/client.py", line 1377, in getresponse response.begin() File "/usr/lib/python3.6/http/client.py", line 320, in begin version, status, reason = self._read_status() File "/usr/lib/python3.6/http/client.py", line 281, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/lib/python3.6/socket.py", line 586, in readinto return self._sock.recv_into(b) socket.timeout: timed out

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/http_urllib3.py", line 252, in perform_request method, url, body, retries=Retry(False), headers=request_headers, **kw File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 786, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/usr/local/lib/python3.6/dist-packages/urllib3/util/retry.py", line 525, in increment raise six.reraise(type(error), error, _stacktrace) File "/usr/local/lib/python3.6/dist-packages/urllib3/packages/six.py", line 770, in reraise raise value File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 710, in urlopen chunked=chunked, File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 451, in _make_request self._raise_timeout(err=e, url=url, timeout_value=read_timeout) File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 341, in _raise_timeout self, url, "Read timed out. (read timeout=%s)" % timeout_value urllib3.exceptions.ReadTimeoutError: HTTPConnectionPool(host='localhost', port=9200): Read timed out. (read timeout=1000)

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 122, in run algo.fit(X_train) File "/home/app/ann_benchmarks/algorithms/opensearchknn.py", line 69, in fit self.es.indices.forcemerge(self.name, max_num_segments=1, request_timeout=1000) File "/usr/local/lib/python3.6/dist-packages/elasticsearch/client/utils.py", line 168, in _wrapped return func(*args, params=params, headers=headers, *kwargs) File "/usr/local/lib/python3.6/dist-packages/elasticsearch/client/indices.py", line 1125, in forcemerge "POST", _make_path(index, "_forcemerge"), params=params, headers=headers File "/usr/local/lib/python3.6/dist-packages/elasticsearch/transport.py", line 415, in perform_request raise e File "/usr/local/lib/python3.6/dist-packages/elasticsearch/transport.py", line 388, in perform_request timeout=timeout, File "/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/http_urllib3.py", line 265, in perform_request raise ConnectionTimeout("TIMEOUT", str(e), e) elasticsearch.exceptions.ConnectionTimeout: ConnectionTimeout caused by - ReadTimeoutError(HTTPConnectionPool(host='localhost', port=9200): Read timed out. (read timeout=1000)) ←[0m Child process for container bcbae95dfcreturned exit code 1 with message None ←[31m['angular', 4096] Trying to instantiate ann_benchmarks.algorithms.faiss.FaissIVFPQfs(['angular', 4096]) got a train set of size (1183514 25) got 10000 queries Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 122, in run algo.fit(X_train) File "/home/app/ann_benchmarks/algorithms/faiss.py", line 99, in fit index = faiss.index_factory(d, factory_string, faiss_metric) File "/root/anaconda3/lib/python3.8/site-packages/faiss/swigfaiss.py", line 5636, in index_factory return _swigfaiss.index_factory(args) RuntimeError: Error in void faiss::ProductQuantizer::set_derived_values() at /opt/conda/conda-bld/faiss-pkg_1623024438023/work/faiss/impl/ProductQuantizer.cpp:186: Error: 'd % M == 0' failed: The dimension of the vector (d) should be a multiple of the number of subquantizers (M) ←[0m Child process for container 1d4dd65e97returned exit code 1 with message None ←[31m['angular', 'Float', {'edge': 20, 'searchedge': 60, 'bulk': 100}] Trying to instantiate ann_benchmarks.algorithms.vald.Vald(['angular', 'Float', {'edge': 20, 'searchedge': 60, 'bulk': 100}]) got a train set of size (1183514 25) got 10000 queries ←[32m2022-06-01 02:17:32 [INFO]: maxprocs: Leaving GOMAXPROCS=1: CPU quota undefined←[39m ←[33m2022-06-01 02:17:32 [WARN]: failed to setup option : github.com/vdaas/vald/pkg/agent/core/ngt/service/vqueue.WithInsertBufferPoolSize.func1: invalid option, name: insertBufferPoolSize, val: 0←[39m ←[33m2022-06-01 02:17:32 [WARN]: failed to setup option : github.com/vdaas/vald/pkg/agent/core/ngt/service/vqueue.WithDeleteBufferPoolSize.func1: invalid option, name: deleteBufferPoolSize, val: 0←[39m ←[33m2022-06-01 02:17:32 [WARN]: failed to setup option : github.com/vdaas/vald/pkg/agent/core/ngt/handler/grpc.WithStreamConcurrency.func1: invalid option, name: streamConcurrency, val: 0←[39m ←[32m2022-06-01 02:17:32 [INFO]: service agent ngt(version: v0.0.0)starting...←[39m ←[32m2022-06-01 02:17:32 [INFO]: executing daemon pre-start function←[39m ←[32m2022-06-01 02:17:32 [INFO]: executing daemon start function←[39m ←[32m2022-06-01 02:17:32 [INFO]: server agent-grpc executing preStartFunc←[39m ←[32m2022-06-01 02:17:32 [INFO]: gRPC server agent-grpc starting on unix:///var/run/vald.sock←[39m ←[32m2022-06-01 02:17:32 [INFO]: REST server readiness starting on tcp://127.0.0.1:3001←[39m ←[32m2022-06-01 02:17:32 [INFO]: create index operation started, uncommitted indexes = 100←[39m SIGILL: illegal instruction PC=0xedb8ac m=7 sigcode=2 instruction bytes: 0xc4 0xe3 0x7d 0x38 0xc1 0x1 0xc5 0xfe 0x7f 0x43 0x30 0xc5 0xf8 0x77 0x48 0x8d

goroutine 0 [idle]: runtime: unknown pc 0xedb8ac stack: frame={sp:0x7fecc67fbaa0, fp:0x0} stack=[0x7fecc5ffc490,0x7fecc67fc090) 0x00007fecc67fb9a0: 0x000000000000001f 0x000000000100c5fd 0x00007fecc67fb9b0: 0x00007f9e8f8f01c0 0x0000000000000000 0x00007fecc67fb9c0: 0x00007fec00000021 0x00007fecb4000080 0x00007fecc67fb9d0: 0x0000000000000200 0x00007fecb40c9d00 0x00007fecc67fb9e0: 0x0000000000001000 0x00007fecb4000020 0x00007fecc67fb9f0: 0x0000000000000008 0x0000003800000021 0x00007fecc67fba00: 0x0000000000000001 0x0000000000000000 0x00007fecc67fba10: 0x0000000000000000 0x000000770000007c 0x00007fecc67fba20: 0x0000005c0000006e 0x00007fecb4000080 0x00007fecc67fba30: 0x0000000000000040 0x000000000000001f 0x00007fecc67fba40: 0x0000000000000200 0x00007fecb4000020 0x00007fecc67fba50: 0x0000000000000000 0x00007fecb4000f38 0x00007fecc67fba60: 0x00007fecc67fbbe0 0x000000000100e0b1 0x00007fecc67fba70: 0x0000000000000200 0x00007fecc67fbaf0 0x00007fecc67fba80: 0x00007fecc67fbbe0 0x0000000000f03659 0x00007fecc67fba90: 0x00007fecc67fbcc8 0x0000000000edb868 0x00007fecc67fbaa0: <0x0000000000000000 0x00000000b4000020 0x00007fecc67fbab0: 0x0000000000000000 0x00007fecb4006584 0x00007fecc67fbac0: 0x00007fecf3b40018 0x00007fecc67fbcc0 0x00007fecc67fbad0: 0x000000000000000f 0x00007fecc67fbbb4 0x00007fecc67fbae0: 0x000000000387b2c0 0x00007fecc67fbbe0 0x00007fecc67fbaf0: 0x000000000387b020 0x0000000000eb9c05 0x00007fecc67fbb00: 0x00007fecc67fbb30 0x0000000000000000 0x00007fecc67fbb10: 0x00000000013343a0 0x00007fecc67fbcc8 0x00007fecc67fbb20: 0x00007fecc67fbc68 0x0000000000002710 0x00007fecc67fbb30: 0x00007fecc67fbe30 0x000000c0002fa000 0x00007fecc67fbb40: 0x00000000013343a0 0x000000000387b020 0x00007fecc67fbb50: 0x00007fecc67fbcc0 0x0000000000ec1584 0x00007fecc67fbb60: 0x0000000000000000 0x00007fecc67fbc00 0x00007fecc67fbb70: 0x00007fecc67fbc68 0x00007fecc67fbbb4 0x00007fecc67fbb80: 0x00007fecc67fbbe0 0x0000000000000000 0x00007fecc67fbb90: 0x0000000000000000 0x00000000000186a0 runtime: unknown pc 0xedb8ac stack: frame={sp:0x7fecc67fbaa0, fp:0x0} stack=[0x7fecc5ffc490,0x7fecc67fc090) 0x00007fecc67fb9a0: 0x000000000000001f 0x000000000100c5fd 0x00007fecc67fb9b0: 0x00007f9e8f8f01c0 0x0000000000000000 0x00007fecc67fb9c0: 0x00007fec00000021 0x00007fecb4000080 0x00007fecc67fb9d0: 0x0000000000000200 0x00007fecb40c9d00 0x00007fecc67fb9e0: 0x0000000000001000 0x00007fecb4000020 0x00007fecc67fb9f0: 0x0000000000000008 0x0000003800000021 0x00007fecc67fba00: 0x0000000000000001 0x0000000000000000 0x00007fecc67fba10: 0x0000000000000000 0x000000770000007c 0x00007fecc67fba20: 0x0000005c0000006e 0x00007fecb4000080 0x00007fecc67fba30: 0x0000000000000040 0x000000000000001f 0x00007fecc67fba40: 0x0000000000000200 0x00007fecb4000020 0x00007fecc67fba50: 0x0000000000000000 0x00007fecb4000f38 0x00007fecc67fba60: 0x00007fecc67fbbe0 0x000000000100e0b1 0x00007fecc67fba70: 0x0000000000000200 0x00007fecc67fbaf0 0x00007fecc67fba80: 0x00007fecc67fbbe0 0x0000000000f03659 0x00007fecc67fba90: 0x00007fecc67fbcc8 0x0000000000edb868 0x00007fecc67fbaa0: <0x0000000000000000 0x00000000b4000020 0x00007fecc67fbab0: 0x0000000000000000 0x00007fecb4006584 0x00007fecc67fbac0: 0x00007fecf3b40018 0x00007fecc67fbcc0 0x00007fecc67fbad0: 0x000000000000000f 0x00007fecc67fbbb4 0x00007fecc67fbae0: 0x000000000387b2c0 0x00007fecc67fbbe0 0x00007fecc67fbaf0: 0x000000000387b020 0x0000000000eb9c05 0x00007fecc67fbb00: 0x00007fecc67fbb30 0x0000000000000000 0x00007fecc67fbb10: 0x00000000013343a0 0x00007fecc67fbcc8 0x00007fecc67fbb20: 0x00007fecc67fbc68 0x0000000000002710 0x00007fecc67fbb30: 0x00007fecc67fbe30 0x000000c0002fa000 0x00007fecc67fbb40: 0x00000000013343a0 0x000000000387b020 0x00007fecc67fbb50: 0x00007fecc67fbcc0 0x0000000000ec1584 0x00007fecc67fbb60: 0x0000000000000000 0x00007fecc67fbc00 0x00007fecc67fbb70: 0x00007fecc67fbc68 0x00007fecc67fbbb4 0x00007fecc67fbb80: 0x00007fecc67fbbe0 0x0000000000000000 0x00007fecc67fbb90: 0x0000000000000000 0x00000000000186a0

goroutine 188 [syscall]: runtime.cgocall(0xe67c80, 0xc0002f9430) runtime/cgocall.go:156 +0x5c fp=0xc0002f9408 sp=0xc0002f93d0 pc=0x41847c github.com/vdaas/vald/internal/core/algorithm/ngt._Cfunc_ngt_create_index(0x387b020, 0x2710, 0x387ab90) _cgo_gotypes.go:197 +0x49 fp=0xc0002f9430 sp=0xc0002f9408 pc=0xdffea9 github.com/vdaas/vald/internal/core/algorithm/ngt.(ngt).CreateIndex.func1(0x12e65a3, 0xe, 0xc00045cf50) github.com/vdaas/vald/internal/core/algorithm/ngt/ngt.go:503 +0x72 fp=0xc0002f9478 sp=0xc0002f9430 pc=0xe04b92 github.com/vdaas/vald/internal/core/algorithm/ngt.(ngt).CreateIndex(0xc00031e6c0, 0x12e65a3) github.com/vdaas/vald/internal/core/algorithm/ngt/ngt.go:503 +0x59 fp=0xc0002f94b0 sp=0xc0002f9478 pc=0xe04a99 github.com/vdaas/vald/pkg/agent/core/ngt/service.(ngt).CreateIndex(0xc000337560, {0x152b638, 0xc0000ed950}, 0x2710) github.com/vdaas/vald/pkg/agent/core/ngt/service/ngt.go:689 +0x773 fp=0xc0002f9708 sp=0xc0002f94b0 pc=0xe17293 github.com/vdaas/vald/pkg/agent/core/ngt/handler/grpc.(server).CreateIndex(0xc00051c550, {0x152b638, 0xc0000ed950}, 0xc0000ed980) github.com/vdaas/vald/pkg/agent/core/ngt/handler/grpc/handler.go:1693 +0x135 fp=0xc0002f9b70 sp=0xc0002f9708 pc=0xe5fa35 github.com/vdaas/vald/apis/grpc/v1/agent/core._Agent_CreateIndex_Handler({0x12c1500, 0xc00051c550}, {0x152b638, 0xc0000ed950}, 0xc0004f72c0, 0x0) github.com/vdaas/vald/apis/grpc/v1/agent/core/agent_vtproto.pb.go:141 +0x170 fp=0xc0002f9bc8 sp=0xc0002f9b70 pc=0xb0f2b0 google.golang.org/grpc.(Server).processUnaryRPC(0xc0002cafc0, {0x153bc58, 0xc0003b2180}, 0xc000336120, 0xc00053c030, 0x1cfda60, 0x0) google.golang.org/grpc@v1.40.0/server.go:1279 +0xccf fp=0xc0002f9e48 sp=0xc0002f9bc8 pc=0xa3656f google.golang.org/grpc.(Server).handleStream(0xc0002cafc0, {0x153bc58, 0xc0003b2180}, 0xc000336120, 0x0) google.golang.org/grpc@v1.40.0/server.go:1608 +0xa2a fp=0xc0002f9f68 sp=0xc0002f9e48 pc=0xa3a38a google.golang.org/grpc.(Server).serveStreams.func1.2() google.golang.org/grpc@v1.40.0/server.go:923 +0x98 fp=0xc0002f9fe0 sp=0xc0002f9f68 pc=0xa34058 runtime.goexit() runtime/asm_amd64.s:1581 +0x1 fp=0xc0002f9fe8 sp=0xc0002f9fe0 pc=0x47e001 created by google.golang.org/grpc.(Server).serveStreams.func1 google.golang.org/grpc@v1.40.0/server.go:921 +0x294

goroutine 1 [select]: github.com/vdaas/vald/internal/runner.Run({0x152b5c8, 0xc000040030}, {0x1532558, 0xc00051c690}, {0x12e1497, 0x9}) github.com/vdaas/vald/internal/runner/runner.go:160 +0x3ec github.com/vdaas/vald/internal/runner.Do({0x152b5c8, 0xc000040030}, {0xc0006ffc88, 0x4, 0x0}) github.com/vdaas/vald/internal/runner/runner.go:137 +0x81d main.main.func1() github.com/vdaas/vald/cmd/agent/core/ngt/main.go:40 +0x16e github.com/vdaas/vald/internal/safety.recoverFunc.func1() github.com/vdaas/vald/internal/safety/safety.go:63 +0x73 main.main() github.com/vdaas/vald/cmd/agent/core/ngt/main.go:55 +0x42

goroutine 6 [select]: github.com/kpango/fastime.(Fastime).StartTimerD.func1() github.com/kpango/fastime@v1.0.17/fastime.go:192 +0x127 created by github.com/kpango/fastime.(Fastime).StartTimerD github.com/kpango/fastime@v1.0.17/fastime.go:185 +0x147

goroutine 7 [select]: go.opencensus.io/stats/view.(*worker).start(0xc0000e6800) go.opencensus.io@v0.23.0/stats/view/worker.go:276 +0xb9 created by go.opencensus.io/stats/view.init.0 go.opencensus.io@v0.23.0/stats/view/worker.go:34 +0x92

goroutine 75 [syscall]: os/signal.signal_recv() runtime/sigqueue.go:169 +0x98 os/signal.loop() os/signal/signal_unix.go:24 +0x19 created by os/signal.Notify.func1.1 os/signal/signal.go:151 +0x2c

goroutine 76 [select]: os/signal.NotifyContext.func1() os/signal/signal.go:288 +0x76 created by os/signal.NotifyContext os/signal/signal.go:287 +0x169

goroutine 77 [select]: github.com/vdaas/vald/pkg/agent/core/ngt/usecase.(run).Start.func1() github.com/vdaas/vald/pkg/agent/core/ngt/usecase/agentd.go:170 +0x259 github.com/vdaas/vald/internal/safety.recoverFunc.func1() github.com/vdaas/vald/internal/safety/safety.go:63 +0x73 github.com/vdaas/vald/internal/errgroup.(group).Go.func1() github.com/vdaas/vald/internal/errgroup/group.go:131 +0x23b created by github.com/vdaas/vald/internal/errgroup.(*group).Go github.com/vdaas/vald/internal/errgroup/group.go:115 +0x93

goroutine 78 [IO wait]: internal/poll.runtime_pollWait(0x7fecf3d4fe90, 0x72) runtime/netpoll.go:229 +0x89 internal/poll.(pollDesc).wait(0xc00050de00, 0x20, 0x0) internal/poll/fd_poll_runtime.go:84 +0x32 internal/poll.(pollDesc).waitRead(...) internal/poll/fd_poll_runtime.go:89 internal/poll.(FD).Accept(0xc00050de00) internal/poll/fd_unix.go:402 +0x22c net.(netFD).accept(0xc00050de00) net/fd_unix.go:173 +0x35 net.(UnixListener).accept(0xc000067c98) net/unixsock_posix.go:167 +0x1c net.(UnixListener).Accept(0xc00053c510) net/unixsock.go:260 +0x3d google.golang.org/grpc.(Server).Serve(0xc0002cafc0, {0x1523b30, 0xc00053c510}) google.golang.org/grpc@v1.40.0/server.go:779 +0x362 github.com/vdaas/vald/internal/servers/server.(server).ListenAndServe.func3() github.com/vdaas/vald/internal/servers/server/server.go:310 +0x3e8 github.com/vdaas/vald/internal/safety.recoverFunc.func1() github.com/vdaas/vald/internal/safety/safety.go:63 +0x73 github.com/vdaas/vald/internal/errgroup.(group).Go.func1() github.com/vdaas/vald/internal/errgroup/group.go:131 +0x23b created by github.com/vdaas/vald/internal/errgroup.(group).Go github.com/vdaas/vald/internal/errgroup/group.go:115 +0x93

goroutine 79 [IO wait]: internal/poll.runtime_pollWait(0x7fecf3d4fda8, 0x72) runtime/netpoll.go:229 +0x89 internal/poll.(pollDesc).wait(0xc00050df80, 0x42c066, 0x0) internal/poll/fd_poll_runtime.go:84 +0x32 internal/poll.(pollDesc).waitRead(...) internal/poll/fd_poll_runtime.go:89 internal/poll.(FD).Accept(0xc00050df80) internal/poll/fd_unix.go:402 +0x22c net.(netFD).accept(0xc00050df80) net/fd_unix.go:173 +0x35 net.(TCPListener).accept(0xc0003e9c38) net/tcpsock_posix.go:140 +0x28 net.(TCPListener).Accept(0xc0003e9c38) net/tcpsock.go:262 +0x3d net/http.(Server).Serve(0xc0002e8540, {0x1523b00, 0xc0003e9c38}) net/http/server.go:3001 +0x394 github.com/vdaas/vald/internal/servers/server.(server).ListenAndServe.func3() github.com/vdaas/vald/internal/servers/server/server.go:304 +0x352 github.com/vdaas/vald/internal/safety.recoverFunc.func1() github.com/vdaas/vald/internal/safety/safety.go:63 +0x73 github.com/vdaas/vald/internal/errgroup.(group).Go.func1() github.com/vdaas/vald/internal/errgroup/group.go:131 +0x23b created by github.com/vdaas/vald/internal/errgroup.(group).Go github.com/vdaas/vald/internal/errgroup/group.go:115 +0x93

goroutine 80 [chan receive]: github.com/vdaas/vald/internal/servers.(listener).ListenAndServe.func1() github.com/vdaas/vald/internal/servers/servers.go:91 +0x78 github.com/vdaas/vald/internal/safety.recoverFunc.func1() github.com/vdaas/vald/internal/safety/safety.go:63 +0x73 github.com/vdaas/vald/internal/errgroup.(group).Go.func1() github.com/vdaas/vald/internal/errgroup/group.go:131 +0x23b created by github.com/vdaas/vald/internal/errgroup.(*group).Go github.com/vdaas/vald/internal/errgroup/group.go:115 +0x93

goroutine 84 [select]: google.golang.org/grpc/internal/transport.(controlBuffer).get(0xc00051c820, 0x1) google.golang.org/grpc@v1.40.0/internal/transport/controlbuf.go:406 +0x11b google.golang.org/grpc/internal/transport.(loopyWriter).run(0xc00074c180) google.golang.org/grpc@v1.40.0/internal/transport/controlbuf.go:533 +0x85 google.golang.org/grpc/internal/transport.NewServerTransport.func2() google.golang.org/grpc@v1.40.0/internal/transport/http2_server.go:321 +0xc6 created by google.golang.org/grpc/internal/transport.NewServerTransport google.golang.org/grpc@v1.40.0/internal/transport/http2_server.go:318 +0x17ef

goroutine 85 [select]: google.golang.org/grpc/internal/transport.(*http2Server).keepalive(0xc0003b2180) google.golang.org/grpc@v1.40.0/internal/transport/http2_server.go:1078 +0x259 created by google.golang.org/grpc/internal/transport.NewServerTransport google.golang.org/grpc@v1.40.0/internal/transport/http2_server.go:330 +0x1837

goroutine 86 [IO wait]: internal/poll.runtime_pollWait(0x7fecf3d4fcc0, 0x72) runtime/netpoll.go:229 +0x89 internal/poll.(pollDesc).wait(0xc0000e6500, 0xc000766000, 0x0) internal/poll/fd_poll_runtime.go:84 +0x32 internal/poll.(pollDesc).waitRead(...) internal/poll/fd_poll_runtime.go:89 internal/poll.(FD).Read(0xc0000e6500, {0xc000766000, 0x8000, 0x8000}) internal/poll/fd_unix.go:167 +0x25a net.(netFD).Read(0xc0000e6500, {0xc000766000, 0xc000062c78, 0x41a9e9}) net/fd_posix.go:56 +0x29 net.(conn).Read(0xc000010030, {0xc000766000, 0xc00074c420, 0x462574}) net/net.go:183 +0x45 bufio.(Reader).Read(0xc00074c120, {0xc0002e8660, 0x9, 0xc000062d30}) bufio/bufio.go:227 +0x1b4 io.ReadAtLeast({0x150caa0, 0xc00074c120}, {0xc0002e8660, 0x9, 0x9}, 0x9) io/io.go:328 +0x9a io.ReadFull(...) io/io.go:347 golang.org/x/net/http2.readFrameHeader({0xc0002e8660, 0x9, 0xc0003ed8c0}, {0x150caa0, 0xc00074c120}) golang.org/x/net@v0.0.0-20210825183410-e898025ed96a/http2/frame.go:237 +0x6e golang.org/x/net/http2.(Framer).ReadFrame(0xc0002e8620) golang.org/x/net@v0.0.0-20210825183410-e898025ed96a/http2/frame.go:498 +0x95 google.golang.org/grpc/internal/transport.(http2Server).HandleStreams(0xc0003b2180, 0x1000000004aa101, 0x488200) google.golang.org/grpc@v1.40.0/internal/transport/http2_server.go:558 +0xb2 google.golang.org/grpc.(Server).serveStreams(0xc0002cafc0, {0x153bc58, 0xc0003b2180}) google.golang.org/grpc@v1.40.0/server.go:907 +0x142 google.golang.org/grpc.(Server).handleRawConn.func1() google.golang.org/grpc@v1.40.0/server.go:847 +0x46 created by google.golang.org/grpc.(*Server).handleRawConn google.golang.org/grpc@v1.40.0/server.go:846 +0x185

rax 0x7fecb4388f50 rbx 0x7fecc67fbcc8 rcx 0x7fecb4389150 rdx 0x7fecb4000f40 rdi 0x1d0d4c0 rsi 0x7fecb4389150 rbp 0x7fecc67fbaf0 rsp 0x7fecc67fbaa0 r8 0x7fecb4388f50 r9 0x7fecb4388f50 r10 0x230 r11 0x206 r12 0x7fecc67fbbe0 r13 0x0 r14 0x7fecb4000f38 r15 0x7fecc67fbbe0 rip 0xedb8ac rflags 0x10212 cs 0x33 fs 0x0 gs 0x0 Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 122, in run algo.fit(X_train) File "/home/app/ann_benchmarks/algorithms/vald.py", line 131, in fit pool_size=10000)) File "/usr/local/lib/python3.6/dist-packages/grpc/_channel.py", line 946, in call return _end_unary_response_blocking(state, call, False, None) File "/usr/local/lib/python3.6/dist-packages/grpc/_channel.py", line 849, in _end_unary_response_blocking raise _InactiveRpcError(state) grpc._channel._InactiveRpcError: <_InactiveRpcError of RPC that terminated with: status = StatusCode.UNAVAILABLE details = "Socket closed" debug_error_string = "{"created":"@1654049853.438688700","description":"Error received from peer unix:/var/run/vald.sock","file":"src/core/lib/surface/call.cc","file_line":952,"grpc_message":"Socket closed","grpc_status":14}"

←[0m Child process for container 4fe6dfddcbreturned exit code 1 with message None ←[31m/home/app/entrypoint.sh: line 2: 10 Illegal instruction /var/lib/milvus/bin/milvus_server -d -c /var/lib/milvus/conf/server_config.yaml -l /var/lib/milvus/conf/log_config.conf ['angular', 'IVF_SQ8', 300] Trying to instantiate ann_benchmarks.algorithms.milvus.Milvus(['angular', 'IVF_SQ8', 300]) Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 212, in connect grpc.channel_ready_future(self._channel).result(timeout=timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 139, in result self._block(timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 85, in _block raise grpc.FutureTimeoutError() grpc.FutureTimeoutError

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 99, in run algo = instantiate_algorithm(definition) File "/home/app/ann_benchmarks/algorithms/definitions.py", line 24, in instantiate_algorithm return constructor(*definition.arguments) File "/home/app/ann_benchmarks/algorithms/milvus.py", line 14, in init self._milvus.connect(host='localhost', port='19530') File "/usr/local/lib/python3.6/dist-packages/milvus/client/stub.py", line 45, in connect return self._handler.connect(host, port, uri, timeout) File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 216, in connect raise NotConnectError('Fail connecting to server on {}. Timeout'.format(self._uri)) milvus.client.exceptions.NotConnectError: Fail connecting to server on localhost:19530. Timeout ←[0m Child process for container 535457d77breturned exit code 1 with message None ←[31m/home/app/entrypoint.sh: line 2: 10 Illegal instruction /var/lib/milvus/bin/milvus_server -d -c /var/lib/milvus/conf/server_config.yaml -l /var/lib/milvus/conf/log_config.conf ['angular', 'IVF_FLAT', 100] Trying to instantiate ann_benchmarks.algorithms.milvus.Milvus(['angular', 'IVF_FLAT', 100]) Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 212, in connect grpc.channel_ready_future(self._channel).result(timeout=timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 139, in result self._block(timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 85, in _block raise grpc.FutureTimeoutError() grpc.FutureTimeoutError

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 99, in run algo = instantiate_algorithm(definition) File "/home/app/ann_benchmarks/algorithms/definitions.py", line 24, in instantiate_algorithm return constructor(*definition.arguments) File "/home/app/ann_benchmarks/algorithms/milvus.py", line 14, in init self._milvus.connect(host='localhost', port='19530') File "/usr/local/lib/python3.6/dist-packages/milvus/client/stub.py", line 45, in connect return self._handler.connect(host, port, uri, timeout) File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 216, in connect raise NotConnectError('Fail connecting to server on {}. Timeout'.format(self._uri)) milvus.client.exceptions.NotConnectError: Fail connecting to server on localhost:19530. Timeout ←[0m Child process for container e948999b37returned exit code 1 with message None ←[31m/home/app/entrypoint.sh: line 2: 10 Illegal instruction /var/lib/milvus/bin/milvus_server -d -c /var/lib/milvus/conf/server_config.yaml -l /var/lib/milvus/conf/log_config.conf ['angular', 'IVF_FLAT', 1000] Trying to instantiate ann_benchmarks.algorithms.milvus.Milvus(['angular', 'IVF_FLAT', 1000]) Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 212, in connect grpc.channel_ready_future(self._channel).result(timeout=timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 139, in result self._block(timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 85, in _block raise grpc.FutureTimeoutError() grpc.FutureTimeoutError

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 99, in run algo = instantiate_algorithm(definition) File "/home/app/ann_benchmarks/algorithms/definitions.py", line 24, in instantiate_algorithm return constructor(*definition.arguments) File "/home/app/ann_benchmarks/algorithms/milvus.py", line 14, in init self._milvus.connect(host='localhost', port='19530') File "/usr/local/lib/python3.6/dist-packages/milvus/client/stub.py", line 45, in connect return self._handler.connect(host, port, uri, timeout) File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 216, in connect raise NotConnectError('Fail connecting to server on {}. Timeout'.format(self._uri)) milvus.client.exceptions.NotConnectError: Fail connecting to server on localhost:19530. Timeout ←[0m Child process for container 7e33c765e7returned exit code 1 with message None ←[31m/home/app/entrypoint.sh: line 2: 6 Illegal instruction /var/lib/milvus/bin/milvus_server -d -c /var/lib/milvus/conf/server_config.yaml -l /var/lib/milvus/conf/log_config.conf ['angular', 'IVF_SQ8', 10000] Trying to instantiate ann_benchmarks.algorithms.milvus.Milvus(['angular', 'IVF_SQ8', 10000]) Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 212, in connect grpc.channel_ready_future(self._channel).result(timeout=timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 139, in result self._block(timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 85, in _block raise grpc.FutureTimeoutError() grpc.FutureTimeoutError

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 99, in run algo = instantiate_algorithm(definition) File "/home/app/ann_benchmarks/algorithms/definitions.py", line 24, in instantiate_algorithm return constructor(*definition.arguments) File "/home/app/ann_benchmarks/algorithms/milvus.py", line 14, in init self._milvus.connect(host='localhost', port='19530') File "/usr/local/lib/python3.6/dist-packages/milvus/client/stub.py", line 45, in connect return self._handler.connect(host, port, uri, timeout) File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 216, in connect raise NotConnectError('Fail connecting to server on {}. Timeout'.format(self._uri)) milvus.client.exceptions.NotConnectError: Fail connecting to server on localhost:19530. Timeout ←[0m Child process for container c77b00f613returned exit code 1 with message None ←[31m/home/app/entrypoint.sh: line 2: 9 Illegal instruction /var/lib/milvus/bin/milvus_server -d -c /var/lib/milvus/conf/server_config.yaml -l /var/lib/milvus/conf/log_config.conf ['angular', 'IVF_FLAT', 3000] Trying to instantiate ann_benchmarks.algorithms.milvus.Milvus(['angular', 'IVF_FLAT', 3000]) Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 212, in connect grpc.channel_ready_future(self._channel).result(timeout=timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 139, in result self._block(timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 85, in _block raise grpc.FutureTimeoutError() grpc.FutureTimeoutError

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 99, in run algo = instantiate_algorithm(definition) File "/home/app/ann_benchmarks/algorithms/definitions.py", line 24, in instantiate_algorithm return constructor(definition.arguments) File "/home/app/ann_benchmarks/algorithms/milvus.py", line 14, in init self._milvus.connect(host='localhost', port='19530') File "/usr/local/lib/python3.6/dist-packages/milvus/client/stub.py", line 45, in connect return self._handler.connect(host, port, uri, timeout) File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 216, in connect raise NotConnectError('Fail connecting to server on {}. Timeout'.format(self._uri)) milvus.client.exceptions.NotConnectError: Fail connecting to server on localhost:19530. Timeout ←[0m Child process for container 98a1094dc1returned exit code 1 with message None ←[31m['angular', 25, {'M': 16, 'efConstruction': 500}] Trying to instantiate ann_benchmarks.algorithms.opensearchknn.OpenSearchKNN(['angular', 25, {'M': 16, 'efConstruction': 500}]) Waiting for elasticsearch health endpoint... Elasticsearch is ready got a train set of size (1183514 25) got 10000 queries Uploading data to the Index: os-m-16-efconstruction-500 100%|##########| 1183514/1183514 [04:01<00:00, 4908.78it/s] Force Merge... Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 449, in _make_request six.raise_from(e, None) File "", line 3, in raise_from File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 444, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.6/http/client.py", line 1377, in getresponse response.begin() File "/usr/lib/python3.6/http/client.py", line 320, in begin version, status, reason = self._read_status() File "/usr/lib/python3.6/http/client.py", line 281, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/lib/python3.6/socket.py", line 586, in readinto return self._sock.recv_into(b) socket.timeout: timed out

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/http_urllib3.py", line 252, in perform_request method, url, body, retries=Retry(False), headers=request_headers, **kw File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 786, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/usr/local/lib/python3.6/dist-packages/urllib3/util/retry.py", line 525, in increment raise six.reraise(type(error), error, _stacktrace) File "/usr/local/lib/python3.6/dist-packages/urllib3/packages/six.py", line 770, in reraise raise value File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 710, in urlopen chunked=chunked, File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 451, in _make_request self._raise_timeout(err=e, url=url, timeout_value=read_timeout) File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 341, in _raise_timeout self, url, "Read timed out. (read timeout=%s)" % timeout_value urllib3.exceptions.ReadTimeoutError: HTTPConnectionPool(host='localhost', port=9200): Read timed out. (read timeout=1000)

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 122, in run algo.fit(X_train) File "/home/app/ann_benchmarks/algorithms/opensearchknn.py", line 69, in fit self.es.indices.forcemerge(self.name, max_num_segments=1, request_timeout=1000) File "/usr/local/lib/python3.6/dist-packages/elasticsearch/client/utils.py", line 168, in _wrapped return func(*args, params=params, headers=headers, *kwargs) File "/usr/local/lib/python3.6/dist-packages/elasticsearch/client/indices.py", line 1125, in forcemerge "POST", _make_path(index, "_forcemerge"), params=params, headers=headers File "/usr/local/lib/python3.6/dist-packages/elasticsearch/transport.py", line 415, in perform_request raise e File "/usr/local/lib/python3.6/dist-packages/elasticsearch/transport.py", line 388, in perform_request timeout=timeout, File "/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/http_urllib3.py", line 265, in perform_request raise ConnectionTimeout("TIMEOUT", str(e), e) elasticsearch.exceptions.ConnectionTimeout: ConnectionTimeout caused by - ReadTimeoutError(HTTPConnectionPool(host='localhost', port=9200): Read timed out. (read timeout=1000)) ←[0m Child process for container 22321304c9returned exit code 1 with message None ←[31m['angular', 25, {'M': 24, 'efConstruction': 500}] Trying to instantiate ann_benchmarks.algorithms.opensearchknn.OpenSearchKNN(['angular', 25, {'M': 24, 'efConstruction': 500}]) Waiting for elasticsearch health endpoint... Elasticsearch is ready got a train set of size (1183514 25) got 10000 queries Uploading data to the Index: os-m-24-efconstruction-500 100%|##########| 1183514/1183514 [03:52<00:00, 5096.40it/s] Force Merge... Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 449, in _make_request six.raise_from(e, None) File "", line 3, in raise_from File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 444, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.6/http/client.py", line 1377, in getresponse response.begin() File "/usr/lib/python3.6/http/client.py", line 320, in begin version, status, reason = self._read_status() File "/usr/lib/python3.6/http/client.py", line 281, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/lib/python3.6/socket.py", line 586, in readinto return self._sock.recv_into(b) socket.timeout: timed out

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/http_urllib3.py", line 252, in perform_request method, url, body, retries=Retry(False), headers=request_headers, **kw File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 786, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/usr/local/lib/python3.6/dist-packages/urllib3/util/retry.py", line 525, in increment raise six.reraise(type(error), error, _stacktrace) File "/usr/local/lib/python3.6/dist-packages/urllib3/packages/six.py", line 770, in reraise raise value File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 710, in urlopen chunked=chunked, File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 451, in _make_request self._raise_timeout(err=e, url=url, timeout_value=read_timeout) File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 341, in _raise_timeout self, url, "Read timed out. (read timeout=%s)" % timeout_value urllib3.exceptions.ReadTimeoutError: HTTPConnectionPool(host='localhost', port=9200): Read timed out. (read timeout=1000)

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 122, in run algo.fit(X_train) File "/home/app/ann_benchmarks/algorithms/opensearchknn.py", line 69, in fit self.es.indices.forcemerge(self.name, max_num_segments=1, request_timeout=1000) File "/usr/local/lib/python3.6/dist-packages/elasticsearch/client/utils.py", line 168, in _wrapped return func(*args, params=params, headers=headers, *kwargs) File "/usr/local/lib/python3.6/dist-packages/elasticsearch/client/indices.py", line 1125, in forcemerge "POST", _make_path(index, "_forcemerge"), params=params, headers=headers File "/usr/local/lib/python3.6/dist-packages/elasticsearch/transport.py", line 415, in perform_request raise e File "/usr/local/lib/python3.6/dist-packages/elasticsearch/transport.py", line 388, in perform_request timeout=timeout, File "/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/http_urllib3.py", line 265, in perform_request raise ConnectionTimeout("TIMEOUT", str(e), e) elasticsearch.exceptions.ConnectionTimeout: ConnectionTimeout caused by - ReadTimeoutError(HTTPConnectionPool(host='localhost', port=9200): Read timed out. (read timeout=1000)) ←[0m Child process for container 280e8265bfreturned exit code 1 with message None ←[31m['angular', 25, {'M': 36, 'efConstruction': 500}] Trying to instantiate ann_benchmarks.algorithms.opensearchknn.OpenSearchKNN(['angular', 25, {'M': 36, 'efConstruction': 500}]) Waiting for elasticsearch health endpoint... Elasticsearch is ready got a train set of size (1183514 25) got 10000 queries Uploading data to the Index: os-m-36-efconstruction-500 100%|##########| 1183514/1183514 [03:57<00:00, 4973.80it/s] Force Merge... Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 449, in _make_request six.raise_from(e, None) File "", line 3, in raise_from File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 444, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.6/http/client.py", line 1377, in getresponse response.begin() File "/usr/lib/python3.6/http/client.py", line 320, in begin version, status, reason = self._read_status() File "/usr/lib/python3.6/http/client.py", line 281, in _read_status line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") File "/usr/lib/python3.6/socket.py", line 586, in readinto return self._sock.recv_into(b) socket.timeout: timed out

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/http_urllib3.py", line 252, in perform_request method, url, body, retries=Retry(False), headers=request_headers, **kw File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 786, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/usr/local/lib/python3.6/dist-packages/urllib3/util/retry.py", line 525, in increment raise six.reraise(type(error), error, _stacktrace) File "/usr/local/lib/python3.6/dist-packages/urllib3/packages/six.py", line 770, in reraise raise value File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 710, in urlopen chunked=chunked, File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 451, in _make_request self._raise_timeout(err=e, url=url, timeout_value=read_timeout) File "/usr/local/lib/python3.6/dist-packages/urllib3/connectionpool.py", line 341, in _raise_timeout self, url, "Read timed out. (read timeout=%s)" % timeout_value urllib3.exceptions.ReadTimeoutError: HTTPConnectionPool(host='localhost', port=9200): Read timed out. (read timeout=1000)

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 122, in run algo.fit(X_train) File "/home/app/ann_benchmarks/algorithms/opensearchknn.py", line 69, in fit self.es.indices.forcemerge(self.name, max_num_segments=1, request_timeout=1000) File "/usr/local/lib/python3.6/dist-packages/elasticsearch/client/utils.py", line 168, in _wrapped return func(*args, params=params, headers=headers, **kwargs) File "/usr/local/lib/python3.6/dist-packages/elasticsearch/client/indices.py", line 1125, in forcemerge "POST", _make_path(index, "_forcemerge"), params=params, headers=headers File "/usr/local/lib/python3.6/dist-packages/elasticsearch/transport.py", line 415, in perform_request raise e File "/usr/local/lib/python3.6/dist-packages/elasticsearch/transport.py", line 388, in perform_request timeout=timeout, File "/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/http_urllib3.py", line 265, in perform_request raise ConnectionTimeout("TIMEOUT", str(e), e) elasticsearch.exceptions.ConnectionTimeout: ConnectionTimeout caused by - ReadTimeoutError(HTTPConnectionPool(host='localhost', port=9200): Read timed out. (read timeout=1000)) ←[0m Child process for container d329a3e4careturned exit code 1 with message None ←[31m/home/app/entrypoint.sh: line 2: 10 Illegal instruction /var/lib/milvus/bin/milvus_server -d -c /var/lib/milvus/conf/server_config.yaml -l /var/lib/milvus/conf/log_config.conf ['angular', 'IVF_FLAT', 30000] Trying to instantiate ann_benchmarks.algorithms.milvus.Milvus(['angular', 'IVF_FLAT', 30000]) Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 212, in connect grpc.channel_ready_future(self._channel).result(timeout=timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 139, in result self._block(timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 85, in _block raise grpc.FutureTimeoutError() grpc.FutureTimeoutError

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 99, in run algo = instantiate_algorithm(definition) File "/home/app/ann_benchmarks/algorithms/definitions.py", line 24, in instantiate_algorithm return constructor(definition.arguments) File "/home/app/ann_benchmarks/algorithms/milvus.py", line 14, in init self._milvus.connect(host='localhost', port='19530') File "/usr/local/lib/python3.6/dist-packages/milvus/client/stub.py", line 45, in connect return self._handler.connect(host, port, uri, timeout) File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 216, in connect raise NotConnectError('Fail connecting to server on {}. Timeout'.format(self._uri)) milvus.client.exceptions.NotConnectError: Fail connecting to server on localhost:19530. Timeout ←[0m Child process for container a7130ba538returned exit code 1 with message None ←[31m['angular', 1204] Trying to instantiate ann_benchmarks.algorithms.faiss.FaissIVFPQfs(['angular', 1204]) got a train set of size (1183514 25) got 10000 queries Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 122, in run algo.fit(X_train) File "/home/app/ann_benchmarks/algorithms/faiss.py", line 99, in fit index = faiss.index_factory(d, factory_string, faiss_metric) File "/root/anaconda3/lib/python3.8/site-packages/faiss/swigfaiss.py", line 5636, in index_factory return _swigfaiss.index_factory(args) RuntimeError: Error in void faiss::ProductQuantizer::set_derived_values() at /opt/conda/conda-bld/faiss-pkg_1623024438023/work/faiss/impl/ProductQuantizer.cpp:186: Error: 'd % M == 0' failed: The dimension of the vector (d) should be a multiple of the number of subquantizers (M) ←[0m Child process for container a50221517freturned exit code 1 with message None ←[31m['angular', 2048] Trying to instantiate ann_benchmarks.algorithms.faiss.FaissIVFPQfs(['angular', 2048]) got a train set of size (1183514 25) got 10000 queries Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 122, in run algo.fit(X_train) File "/home/app/ann_benchmarks/algorithms/faiss.py", line 99, in fit index = faiss.index_factory(d, factory_string, faiss_metric) File "/root/anaconda3/lib/python3.8/site-packages/faiss/swigfaiss.py", line 5636, in index_factory return _swigfaiss.index_factory(*args) RuntimeError: Error in void faiss::ProductQuantizer::set_derived_values() at /opt/conda/conda-bld/faiss-pkg_1623024438023/work/faiss/impl/ProductQuantizer.cpp:186: Error: 'd % M == 0' failed: The dimension of the vector (d) should be a multiple of the number of subquantizers (M) ←[0m Child process for container a0750667bereturned exit code 1 with message None ←[31m/home/app/entrypoint.sh: line 2: 10 Illegal instruction /var/lib/milvus/bin/milvus_server -d -c /var/lib/milvus/conf/server_config.yaml -l /var/lib/milvus/conf/log_config.conf ['angular', 'IVF_SQ8', 100] Trying to instantiate ann_benchmarks.algorithms.milvus.Milvus(['angular', 'IVF_SQ8', 100]) Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 212, in connect grpc.channel_ready_future(self._channel).result(timeout=timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 139, in result self._block(timeout) File "/usr/local/lib/python3.6/dist-packages/grpc/_utilities.py", line 85, in _block raise grpc.FutureTimeoutError() grpc.FutureTimeoutError

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "run_algorithm.py", line 3, in run_from_cmdline() File "/home/app/ann_benchmarks/runner.py", line 211, in run_from_cmdline run(definition, args.dataset, args.count, args.runs, args.batch) File "/home/app/ann_benchmarks/runner.py", line 99, in run algo = instantiate_algorithm(definition) File "/home/app/ann_benchmarks/algorithms/definitions.py", line 24, in instantiate_algorithm return constructor(*definition.arguments) File "/home/app/ann_benchmarks/algorithms/milvus.py", line 14, in init self._milvus.connect(host='localhost', port='19530') File "/usr/local/lib/python3.6/dist-packages/milvus/client/stub.py", line 45, in connect return self._handler.connect(host, port, uri, timeout) File "/usr/local/lib/python3.6/dist-packages/milvus/client/grpc_handler.py", line 216, in connect raise NotConnectError('Fail connecting to server on {}. Timeout'.format(self._uri)) milvus.client.exceptions.NotConnectError: Fail connecting to server on localhost:19530. Timeout ←[0m Child process for container 809ee34a9areturned exit code 1 with message None

alexklibisz commented 2 years ago

Force Merge... ... urllib3.exceptions.ReadTimeoutError: HTTPConnectionPool(host='localhost', port=9200): Read timed out. (read timeout=1000)

I think it's timing out on the force merge step. So all vectors have been indexed, it's trying to, basically, "optimize" the index, but it's taking too long.

kpango commented 2 years ago

@fcakir @maumueller Hi, I am the maintainer of the Vald project. Unfortunately, current Vald docker image does not support non-AVX2 environments. The CPU Xeon E5-1607 v2 does not support AVX2, so it has been confirmed that Vald does not work properly.

The successor CPU, Xeon E5-1607 v3, supports AVX2 and will work. FYI: https://technical.city/en/cpu/Xeon-E5-1607-v3-vs-Xeon-E5-1607-v2

Since we reused the official Vald docker image for this part when running the ann-benchmark, I will submit a pull request for the change at a later date, since it is necessary to rebuild from source code when using Vald in a non-AVX2 environment.