ersilia-os / eos3ae6

Holistic molecular descriptors for scaffold hopping
GNU General Public License v3.0
2 stars 2 forks source link

New model ready for testing! #6

Closed github-actions[bot] closed 1 year ago

github-actions[bot] commented 1 year ago

This model is ready for testing. If you are assigned to this issue, please try it out using the CLI, Google Colab and DockerHub and let us know if it works!

HellenNamulinda commented 1 year ago

Hi @GemmaTuron and @emmakodes, I tested the model using Colab, CLI and docker. It works well. CLI happens to use more decimal points when printing ouput. However, all file outputs have 3dps.

Test file: eml_canonical.csv

Colab Colab Output: eos3ae6_colab_output.csv

{
    "input": {
        "key": "MCGSCOLBFJQGHM-SCZZXKLOSA-N",
        "input": "Nc1nc(NC2CC2)c3ncn([C@@H]4C[C@H](CO)C=C4)c3n1",
        "text": "Nc1nc(NC2CC2)c3ncn([C@@H]4C[C@H](CO)C=C4)c3n1"
    },
    "output": {
        "whales": [
            -5.698,
            -4.167,
            -1.63,
            -1.057,
            -0.707,
            -0.515,
            0.292,
            0.401,
            0.942,
            1.353,
            2.489,
            -0.357,
            -0.266,
            -0.164,
            -0.124,
            -0.082,
            -0.063,
            0.064,
            0.068,
            0.091,
            0.236,
            0.343,
            -0.636,
            -0.154,
            -0.116,
            -0.086,
            -0.06,
            -0.038,
            0.059,
            0.138,
            0.161,
            0.188,
            0.324
        ]
    }
}

CLI eos3ae6_cli_fetch.log Output: eos3ae6_eml_cli_output.csv Pred_log: eos3ae6_cli_output.log

πŸš€ Serving model eos3ae6: whales-descriptor

   URL: http://0.0.0.0:59011
   PID: -1
   SRV: pulled_docker

πŸ‘‰ To run model:
   - run

πŸ’ Information:
   - info
(ersilia) hellenah@hellenah-elitebook:~$ ersilia run -i "Nc1nc(NC2CC2)c3ncn([C@@H]4C[C@H](CO)C=C4)c3n1"
{
    "input": {
        "key": "MCGSCOLBFJQGHM-SCZZXKLOSA-N",
        "input": "Nc1nc(NC2CC2)c3ncn([C@@H]4C[C@H](CO)C=C4)c3n1",
        "text": "Nc1nc(NC2CC2)c3ncn([C@@H]4C[C@H](CO)C=C4)c3n1"
    },
    "output": {
        "whales": [
            -5.697999954223633,
            -4.166999816894531,
            -1.6299999952316284,
            -1.0570000410079956,
            -0.7070000171661377,
            -0.5149999856948853,
            0.2919999957084656,
            0.4009999930858612,
            0.9419999718666077,
            1.3530000448226929,
            2.489000082015991,
            -0.3569999933242798,
            -0.26600000262260437,
            -0.164000004529953,
            -0.12399999797344208,
            -0.0820000022649765,
            -0.06300000101327896,
            0.06400000303983688,
            0.06800000369548798,
            0.09099999815225601,
            0.23600000143051147,
            0.34299999475479126,
            -0.6359999775886536,
            -0.15399999916553497,
            -0.11599999666213989,
            -0.0860000029206276,
            -0.05999999865889549,
            -0.03799999877810478,
            0.05900000035762787,
            0.1379999965429306,
            0.16099999845027924,
            0.18799999356269836,
            0.3240000009536743
        ]
    }
}

Docker The prediction was somewhat slow, so I used the first 50 smiles in the eml dataset. Input: eml_50.csv Docker Output: eos3ae6_eml_docker_output.csv Output log: eos3ae6_docker_output.log

+ [ -z eos3ae6 ]
+ ersilia serve -p 3000 eos3ae6
πŸš€ Serving model eos3ae6: whales-descriptor

   URL: http://127.0.0.1:3000
   PID: 37
   SRV: conda

πŸ‘‰ To run model:
   - run

πŸ’ Information:
   - info
Serving model eos3ae6...
+ echo Serving model eos3ae6...
263b351108a0   ersiliaos/eos3ae6   "sh /root/docker-ent…"   3 minutes ago   Up 3 minutes   80/tcp    amazing_albattani
hellenah@hellenah-elitebook:~$ docker exec -it 263b351108a0 /bin/bash
root@263b351108a0:~# ersilia run -i "Nc1nc(NC2CC2)c3ncn([C@@H]4C[C@H](CO)C=C4)c3n1"
{
    "input": {
        "key": "MCGSCOLBFJQGHM-SCZZXKLOSA-N",
        "input": "Nc1nc(NC2CC2)c3ncn([C@@H]4C[C@H](CO)C=C4)c3n1",
        "text": "Nc1nc(NC2CC2)c3ncn([C@@H]4C[C@H](CO)C=C4)c3n1"
    },
    "output": {
        "whales": [
            -5.698,
            -4.167,
            -1.63,
            -1.057,
            -0.707,
            -0.515,
            0.292,
            0.401,
            0.942,
            1.353,
            2.489,
            -0.357,
            -0.266,
            -0.164,
            -0.124,
            -0.082,
            -0.063,
            0.064,
            0.068,
            0.091,
            0.236,
            0.343,
            -0.636,
            -0.154,
            -0.116,
            -0.086,
            -0.06,
            -0.038,
            0.059,
            0.138,
            0.161,
            0.188,
            0.324
        ]
    }
}
root@263b351108a0:~#

Colab rarely returns empty outputs compared to CLI( probably my computational power). Nonetheless, no smiles are removed, all are returned with their output.

simrantan commented 1 year ago

@GemmaTuron @emmakodes The model works well on CLI, Colab, Docker! Colab Output CLI output3ae6.csv Docker output3ae6.csv