Open sakalouski opened 5 years ago
@sakalouski I can't seem to replicate your error, but I suspect that has to do with the operating system and Python version you're running on, since it seems like the error is occurring when BBopt tries to lock the data file (which is a necessary step--it won't work if you comment out self._load_data()
). It's also possible that there's something different about the code you're actually running and the version of the code you posted here that I ran. This is the code I ran:
import keras
from keras.optimizers import Nadam
from keras.layers import Input, Dense, Dropout
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from keras.metrics import mse
from sklearn import datasets
import pandas as pd
from tqdm import tqdm
from bbopt import BlackBoxOptimizer
bb = BlackBoxOptimizer(__file__)
iris = datasets.load_iris()
X = iris.data
Y = iris.target
train_split = int(.6*len(X))
X_train, X_val = X[:train_split], X[train_split:]
Y_train, Y_val = Y[:train_split], Y[train_split:]
def run_trial():
"""Run one trial of hyperparameter optimization."""
# Start BBopt:
bb.run()
input_shape = 4
h_n_num = bb.randint('num_neur',5,1000)
act = bb.choice('activ_func',['selu','relu','elu'])
num_lay = bb.randint('num_hidden_layers',0,10)
dout = bb.uniform("dropout", 0, 1)
lr = bb.uniform("init_learn_rate", 1e-5, 0.1)
bsize = bb.choice('batch_size',[8,16,32,64,128])
# Create model:
a = Input(shape=(input_shape,))
b = Dense(h_n_num,activation=act)(a)
b = Dropout(dout)(b)
for l in range(num_lay):
b = Dense(h_n_num,activation=act)(b)
b = Dropout(dout)(b)
output = Dense(1,activation='linear',name='out')(b)
model = keras.models.Model(inputs=a, outputs=output)
opt = Nadam(lr)
model.compile(optimizer = opt, loss=mse)
# Train model:
history = model.fit(x=X_train[:-70], y=Y_train[:-70],batch_size=bsize,epochs=1,
validation_data=(X_train[-70:],Y_train[-70:]),
verbose=0,
validation_split = 0.4,
callbacks=[EarlyStopping(patience=30),
ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=25,verbose=0)],
shuffle=False)
train_loss = history.history["loss"][-1]
val_loss = history.history["val_loss"][-1]
bb.remember({
"train_loss": train_loss,
"val_loss": val_loss,
})
bb.minimize(val_loss)
num_trials = 5
result = []
for i in tqdm(range(num_trials)):
run_trial()
result.append(bb.get_current_run())
if len(result)>1:
[i['memo'].update(i['values']) for i in result]
temp = [i['memo'] for i in result]
pd.DataFrame(temp).to_csv('./patch_weekly_5000_trials.csv')
Do you get an error when you run this code?
@sakalouski Also, if you could try updating your bbopt to 0.4.2 (pip install -U bbopt
) and let me know what the error message you get then is, that would be greatly appreciated.
Hi,
running the code from the command line. Tried using json - did not help. However, if I comment self._load_data(), things seem to work. The question is: does the comment break the optimization process?
Thank You!
optimize.py def reload(self): """Completely reload the optimizer.""" self._old_params = {} self._examples = []
self._load_data() <-------------------------------------------------COMMENTED
Traceback (most recent call last): File "test.py", line 26, in
bb = BlackBoxOptimizer(file=file,use_json=True)
File "/home/b7066789/.local/lib/python3.6/site-packages/bbopt/optimizer.py", line 72, in init
self.reload()
File "/home/b7066789/.local/lib/python3.6/site-packages/bbopt/optimizer.py", line 78, in reload
self._load_data()
File "/home/b7066789/.local/lib/python3.6/site-packages/bbopt/optimizer.py", line 192, in _load_data
with Lock(self.data_file, "rb", timeout=lock_timeout) as df:
File "/home/b7066789/.local/lib/python3.6/site-packages/portalocker/utils.py", line 197, in enter
return self.acquire()
File "/home/b7066789/.local/lib/python3.6/site-packages/portalocker/utils.py", line 157, in acquire
raise exceptions.LockException(exception)
portalocker.exceptions.LockException: [Errno 9] Bad file descriptor
System: CentOS 7
pip freeze absl-py==0.2.2 anndata==0.6.6 args==0.1.0 asdf==2.1.0 ast2vec==0.3.8a0 astetik==1.9.5 astor==0.6.2 astropy==3.0.4 atomicwrites==1.2.1 attrs==18.2.0 backcall==0.1.0 bblfsh==2.9.13 bbopt==0.4.1 beautifulsoup4==4.6.3 biopython==1.72 bleach==1.5.0 boto==2.49.0 boto3==1.9.86 botocore==1.12.86 bs4==0.0.1 bz2file==0.98 cachetools==2.1.0 certifi==2018.8.24 chances==0.1.4 chardet==3.0.4 Click==7.0 clint==0.5.1 colorama==0.3.9 cycler==0.10.0 cymem==2.0.2 cytoolz==0.9.0.1 datasketch==1.4.1 decorator==4.3.0 dill==0.2.9 docker==3.5.0 docker-pycreds==0.3.0 docutils==0.14 dulwich==0.19.6 EasyProcess==0.2.3 en-core-web-sm==2.0.0 entrypoints==0.2.3 fa2==0.2 flake8==3.6.0 flake8-polyfill==1.0.2 flatbuffers==1.10 funcsigs==1.0.2 funcy==1.11 future==0.17.1 gast==0.2.0 gensim==3.7.0 geonamescache==1.0.1 google-api-core==1.4.0 google-auth==1.5.1 google-auth-httplib2==0.0.3 google-cloud-core==0.25.0 google-cloud-storage==1.2.0 google-resumable-media==0.3.1 googleapis-common-protos==1.5.3 GPUtil==1.3.0 graphviz==0.10.1 grpcio==1.10.0 grpcio-tools==1.10.0 h5py==2.7.1 html5lib==0.9999999 HTMLParser==0.0.2 HTSeq==0.10.0 httplib2==0.11.3 humanize==0.5.1 hyperas==0.4 hyperopt==0.1.1 idna==2.7 igraph==0.1.11 imageio==2.4.1 ipykernel==4.8.2 ipython==6.4.0 ipython-genutils==0.2.0 ipywidgets==7.4.2 jedi==0.12.0 Jinja2==2.10 jmespath==0.9.3 joblib==0.11 jsonschema==2.6.0 jupyter==1.0.0 jupyter-client==5.2.3 jupyter-console==5.2.0 jupyter-core==4.4.0 Keras==2.2.4 Keras-Applications==1.0.7 Keras-Preprocessing==1.0.9 kerasplotlib==0.1.4 kiwisolver==1.0.1 langdetect==1.0.7 lightgbm==2.2.2 livelossplot==0.2.2 llvmlite==0.23.0 louvain==0.6.1 lxml==4.2.1 lz4==2.1.0 mando==0.6.4 Markdown==2.6.11 MarkupSafe==1.0 matplotlib==3.0.2 mccabe==0.6.1 mistune==0.8.3 mnnpy==0.1.9.4 modelforge==0.7.0 modin==0.2.5 more-itertools==4.3.0 msgpack==0.5.6 msgpack-numpy==0.4.3.2 murmurhash==1.0.1 natsort==5.3.1 nbconvert==5.3.1 nbformat==4.4.0 netifaces==0.10.7 networkx==1.11 nltk==3.4 notebook==5.6.0 numba==0.38.0 numexpr==2.6.5 numpy==1.14.5 pandas==0.23.4 pandocfilters==1.4.2 parquet==1.2 parso==0.2.0 patool==1.12 patsy==0.5.0 pexpect==4.5.0 pickleshare==0.7.4 Pillow==5.1.0 plac==0.9.6 pluggy==0.7.1 ply==3.11 portalocker==1.4.0 pqdict==1.0.0 preshed==2.0.1 prometheus-client==0.3.1 prompt-toolkit==1.0.15 protobuf==3.6.1 psutil==5.4.8 ptyprocess==0.5.2 py==1.6.0 py4j==0.10.7 pyasn1==0.4.4 pyasn1-modules==0.2.2 pycodestyle==2.4.0 pyflakes==2.0.0 Pygments==2.2.0 pyLDAvis==2.1.2 pymongo==3.7.2 pyparsing==2.2.0 pysam==0.14.1 pyspark==2.4.0 PyStemmer==1.3.0 pytest==3.8.2 pytextrank==1.1.0 python-dateutil==2.7.3 python-igraph==0.7.1.post6 python-libsbml==5.17.0 python-pptx==0.6.9 python-snappy==0.5.3 pytz==2018.4 pyunpack==0.1.2 PyWavelets==1.0.1 PyYAML==3.12 pyzmq==17.1.2 qtconsole==4.4.1 radon==2.4.0 ray==0.6.0 redis==3.0.1 regex==2018.1.10 requests==2.20.1 rsa==4.0 s3transfer==0.1.13 scanpy==1.2.2 scikit-image==0.13.1 scikit-learn==0.20.1 scikit-optimize==0.5.2 scipy==1.1.0 seaborn==0.8.1 selectolax==0.1.8 semantic-version==2.6.0 Send2Trash==1.5.0 sh==1.12.14 shap==0.28.5 simplegeneric==0.8.1 simplejson==3.16.0 singledispatch==3.4.0.3 six==1.11.0 sklearn==0.0 smart-open==1.8.0 sourced-engine==0.6.4 sourced-ml==0.6.3 spacy==2.0.18 statistics==1.0.3.5 statsmodels==0.9.0 stocal==1.2 summa==1.2.0 tables==3.4.3 talos==0.4.8 tensorboard==1.12.2 tensorflow==1.12.0 termcolor==1.1.0 terminado==0.8.1 testpath==0.3.1 Theano==1.0.2 thinc==6.12.1 thriftpy==0.3.9 tmsc==0.1.5a0 toolz==0.9.0 torch==0.4.1 torchvision==0.2.1 tornado==5.1 tqdm==4.31.1 traitlets==4.3.2 typing==3.6.6 ujson==1.35 umap==0.1.1 umap-learn==0.2.3 urllib3==1.23 wcwidth==0.1.7 websocket-client==0.53.0 Werkzeug==0.14.1 widgetsnbextension==3.4.0 wrangle==0.5.1 wrapt==1.10.11 xgboost==0.72 XlsxWriter==1.0.5 xmlutils==1.4
The code:
X_train, Y_train, X_val, Y_val = data()
def run_trial(): """Run one trial of hyperparameter optimization."""
Start BBopt:
num_trials = 5 result = []
for i in tqdm(range(num_trials)): run_trial() result.append(bb.get_current_run()) if len(result)>1: [i['memo'].update(i['values']) for i in result] temp = [i['memo'] for i in result] pd.DataFrame(temp).to_csv('./transfer_learning/DL_optimization_reports/patch_weekly_5000_trials.csv')