Closed dxlong2000 closed 4 years ago
If you need help to solve an unexpected issue you observed, please include details following the "Unexpected behaviors" issue template.
Dear Mr. Yuxin Wu Problem: Low AP values in the evaluation matrices. Data I used from COCO Dataset val2017.
!wget http://images.cocodataset.org/zips/val2017.zip
!unzip val2017.zip > /dev/null
git diff
)
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("Cityscapes/mask_rcnn_R_50_FPN.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("Cityscapes/mask_rcnn_R_50_FPN.yaml")
from detectron2.data.datasets import register_coco_instances register_cocoinstances("val2017", {}, "val2017/"+"instances_val2017.json", "val2017") datasetdicts = DatasetCatalog.get("val2017") val2017metadata = MetadataCatalog.get("val2017")
model = build_model(cfg)
from detectron2.checkpoint import DetectionCheckpointer
DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)
checkpointer = DetectionCheckpointer(model, save_dir="output")
checkpointer.save("model_99")
from detectron2.evaluation import COCOEvaluator, inference_on_dataset from detectron2.data import build_detection_testloader evaluator = COCOEvaluator("val2017", cfg, True, output_dir="./output/") val_loader = build_detection_testloader(cfg, "val2017") inference_on_dataset(model, val_loader, evaluator)
2. what exact command you run: I run on Google Colab
3. __full logs__ you observed:
WARNING [06/18 01:20:22 d2.data.datasets.coco]: Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.
[06/18 01:20:22 d2.data.datasets.coco]: Loaded 5000 images in COCO format from val2017/instances_val2017.json [06/18 01:20:22 d2.data.build]: Distribution of instances among all 80 categories: | category | #instances | category | #instances | category | #instances |
---|---|---|---|---|---|---|
person | 10777 | bicycle | 314 | car | 1918 | |
motorcycle | 367 | airplane | 143 | bus | 283 | |
train | 190 | truck | 414 | boat | 424 | |
traffic light | 634 | fire hydrant | 101 | stop sign | 75 | |
parking meter | 60 | bench | 411 | bird | 427 | |
cat | 202 | dog | 218 | horse | 272 | |
sheep | 354 | cow | 372 | elephant | 252 | |
bear | 71 | zebra | 266 | giraffe | 232 | |
backpack | 371 | umbrella | 407 | handbag | 540 | |
tie | 252 | suitcase | 299 | frisbee | 115 | |
skis | 241 | snowboard | 69 | sports ball | 260 | |
kite | 327 | baseball bat | 145 | baseball gl.. | 148 | |
skateboard | 179 | surfboard | 267 | tennis racket | 225 | |
bottle | 1013 | wine glass | 341 | cup | 895 | |
fork | 215 | knife | 325 | spoon | 253 | |
bowl | 623 | banana | 370 | apple | 236 | |
sandwich | 177 | orange | 285 | broccoli | 312 | |
carrot | 365 | hot dog | 125 | pizza | 284 | |
donut | 328 | cake | 310 | chair | 1771 | |
couch | 261 | potted plant | 342 | bed | 163 | |
dining table | 695 | toilet | 179 | tv | 288 | |
laptop | 231 | mouse | 106 | remote | 283 | |
keyboard | 153 | cell phone | 262 | microwave | 55 | |
oven | 143 | toaster | 9 | sink | 225 | |
refrigerator | 126 | book | 1129 | clock | 267 | |
vase | 274 | scissors | 36 | teddy bear | 190 | |
hair drier | 11 | toothbrush | 57 | |||
total | 36335 |
[06/18 01:20:22 d2.data.common]: Serializing 5000 elements to byte tensors and concatenating them all ... [06/18 01:20:22 d2.data.common]: Serialized dataset takes 19.33 MiB [06/18 01:20:22 d2.evaluation.evaluator]: Start inference on 5000 images [06/18 01:20:25 d2.evaluation.evaluator]: Inference done 11/5000. 0.2003 s / img. ETA=0:17:02 [06/18 01:20:30 d2.evaluation.evaluator]: Inference done 35/5000. 0.2044 s / img. ETA=0:17:11 [06/18 01:20:35 d2.evaluation.evaluator]: Inference done 59/5000. 0.2072 s / img. ETA=0:17:20 [06/18 01:20:40 d2.evaluation.evaluator]: Inference done 83/5000. 0.2080 s / img. ETA=0:17:19 [06/18 01:20:45 d2.evaluation.evaluator]: Inference done 109/5000. 0.2049 s / img. ETA=0:16:57 [06/18 01:20:50 d2.evaluation.evaluator]: Inference done 133/5000. 0.2055 s / img. ETA=0:16:57 [06/18 01:20:55 d2.evaluation.evaluator]: Inference done 157/5000. 0.2064 s / img. ETA=0:16:56 [06/18 01:21:01 d2.evaluation.evaluator]: Inference done 182/5000. 0.2055 s / img. ETA=0:16:46 [06/18 01:21:06 d2.evaluation.evaluator]: Inference done 206/5000. 0.2057 s / img. ETA=0:16:42 [06/18 01:21:11 d2.evaluation.evaluator]: Inference done 231/5000. 0.2051 s / img. ETA=0:16:34 [06/18 01:21:16 d2.evaluation.evaluator]: Inference done 255/5000. 0.2054 s / img. ETA=0:16:30 [06/18 01:21:21 d2.evaluation.evaluator]: Inference done 280/5000. 0.2052 s / img. ETA=0:16:23 [06/18 01:21:26 d2.evaluation.evaluator]: Inference done 303/5000. 0.2058 s / img. ETA=0:16:22 [06/18 01:21:31 d2.evaluation.evaluator]: Inference done 328/5000. 0.2057 s / img. ETA=0:16:16 [06/18 01:21:36 d2.evaluation.evaluator]: Inference done 352/5000. 0.2061 s / img. ETA=0:16:14 [06/18 01:21:41 d2.evaluation.evaluator]: Inference done 376/5000. 0.2065 s / img. ETA=0:16:10 [06/18 01:21:47 d2.evaluation.evaluator]: Inference done 401/5000. 0.2065 s / img. ETA=0:16:05 [06/18 01:21:52 d2.evaluation.evaluator]: Inference done 425/5000. 0.2067 s / img. ETA=0:16:01 [06/18 01:21:57 d2.evaluation.evaluator]: Inference done 449/5000. 0.2069 s / img. ETA=0:15:57 [06/18 01:22:02 d2.evaluation.evaluator]: Inference done 472/5000. 0.2074 s / img. ETA=0:15:54 [06/18 01:22:07 d2.evaluation.evaluator]: Inference done 496/5000. 0.2075 s / img. ETA=0:15:50 [06/18 01:22:12 d2.evaluation.evaluator]: Inference done 521/5000. 0.2072 s / img. ETA=0:15:43 [06/18 01:22:17 d2.evaluation.evaluator]: Inference done 545/5000. 0.2073 s / img. ETA=0:15:39 [06/18 01:22:22 d2.evaluation.evaluator]: Inference done 569/5000. 0.2073 s / img. ETA=0:15:33 [06/18 01:22:27 d2.evaluation.evaluator]: Inference done 593/5000. 0.2072 s / img. ETA=0:15:28 [06/18 01:22:33 d2.evaluation.evaluator]: Inference done 616/5000. 0.2076 s / img. ETA=0:15:25 [06/18 01:22:38 d2.evaluation.evaluator]: Inference done 640/5000. 0.2076 s / img. ETA=0:15:20 [06/18 01:22:43 d2.evaluation.evaluator]: Inference done 664/5000. 0.2075 s / img. ETA=0:15:14 [06/18 01:22:48 d2.evaluation.evaluator]: Inference done 688/5000. 0.2076 s / img. ETA=0:15:10 [06/18 01:22:53 d2.evaluation.evaluator]: Inference done 712/5000. 0.2077 s / img. ETA=0:15:05 [06/18 01:22:58 d2.evaluation.evaluator]: Inference done 736/5000. 0.2078 s / img. ETA=0:15:01 [06/18 01:23:03 d2.evaluation.evaluator]: Inference done 760/5000. 0.2077 s / img. ETA=0:14:55 [06/18 01:23:08 d2.evaluation.evaluator]: Inference done 784/5000. 0.2079 s / img. ETA=0:14:51 [06/18 01:23:13 d2.evaluation.evaluator]: Inference done 808/5000. 0.2079 s / img. ETA=0:14:46 [06/18 01:23:19 d2.evaluation.evaluator]: Inference done 832/5000. 0.2080 s / img. ETA=0:14:41 [06/18 01:23:24 d2.evaluation.evaluator]: Inference done 856/5000. 0.2080 s / img. ETA=0:14:36 [06/18 01:23:29 d2.evaluation.evaluator]: Inference done 880/5000. 0.2080 s / img. ETA=0:14:31 [06/18 01:23:34 d2.evaluation.evaluator]: Inference done 904/5000. 0.2079 s / img. ETA=0:14:26 [06/18 01:23:39 d2.evaluation.evaluator]: Inference done 929/5000. 0.2078 s / img. ETA=0:14:20 [06/18 01:23:44 d2.evaluation.evaluator]: Inference done 953/5000. 0.2079 s / img. ETA=0:14:15 [06/18 01:23:49 d2.evaluation.evaluator]: Inference done 977/5000. 0.2078 s / img. ETA=0:14:10 [06/18 01:23:54 d2.evaluation.evaluator]: Inference done 1001/5000. 0.2079 s / img. ETA=0:14:05 [06/18 01:23:59 d2.evaluation.evaluator]: Inference done 1026/5000. 0.2078 s / img. ETA=0:13:59 [06/18 01:24:05 d2.evaluation.evaluator]: Inference done 1050/5000. 0.2079 s / img. ETA=0:13:55 [06/18 01:24:10 d2.evaluation.evaluator]: Inference done 1073/5000. 0.2081 s / img. ETA=0:13:50 [06/18 01:24:15 d2.evaluation.evaluator]: Inference done 1098/5000. 0.2080 s / img. ETA=0:13:45 [06/18 01:24:20 d2.evaluation.evaluator]: Inference done 1122/5000. 0.2081 s / img. ETA=0:13:40 [06/18 01:24:25 d2.evaluation.evaluator]: Inference done 1145/5000. 0.2082 s / img. ETA=0:13:36 [06/18 01:24:30 d2.evaluation.evaluator]: Inference done 1169/5000. 0.2083 s / img. ETA=0:13:31 [06/18 01:24:35 d2.evaluation.evaluator]: Inference done 1193/5000. 0.2083 s / img. ETA=0:13:26 [06/18 01:24:40 d2.evaluation.evaluator]: Inference done 1216/5000. 0.2084 s / img. ETA=0:13:22 [06/18 01:24:45 d2.evaluation.evaluator]: Inference done 1240/5000. 0.2084 s / img. ETA=0:13:17 [06/18 01:24:51 d2.evaluation.evaluator]: Inference done 1264/5000. 0.2085 s / img. ETA=0:13:12 [06/18 01:24:56 d2.evaluation.evaluator]: Inference done 1288/5000. 0.2085 s / img. ETA=0:13:07 [06/18 01:25:01 d2.evaluation.evaluator]: Inference done 1312/5000. 0.2084 s / img. ETA=0:13:02 [06/18 01:25:06 d2.evaluation.evaluator]: Inference done 1336/5000. 0.2083 s / img. ETA=0:12:56 [06/18 01:25:11 d2.evaluation.evaluator]: Inference done 1360/5000. 0.2084 s / img. ETA=0:12:51 [06/18 01:25:16 d2.evaluation.evaluator]: Inference done 1384/5000. 0.2084 s / img. ETA=0:12:46 [06/18 01:25:21 d2.evaluation.evaluator]: Inference done 1408/5000. 0.2083 s / img. ETA=0:12:41 [06/18 01:25:26 d2.evaluation.evaluator]: Inference done 1433/5000. 0.2083 s / img. ETA=0:12:35 [06/18 01:25:31 d2.evaluation.evaluator]: Inference done 1457/5000. 0.2082 s / img. ETA=0:12:30 [06/18 01:25:36 d2.evaluation.evaluator]: Inference done 1482/5000. 0.2081 s / img. ETA=0:12:25 [06/18 01:25:41 d2.evaluation.evaluator]: Inference done 1506/5000. 0.2081 s / img. ETA=0:12:19 [06/18 01:25:47 d2.evaluation.evaluator]: Inference done 1531/5000. 0.2081 s / img. ETA=0:12:14 [06/18 01:25:52 d2.evaluation.evaluator]: Inference done 1555/5000. 0.2081 s / img. ETA=0:12:09 [06/18 01:25:57 d2.evaluation.evaluator]: Inference done 1579/5000. 0.2081 s / img. ETA=0:12:04 [06/18 01:26:02 d2.evaluation.evaluator]: Inference done 1603/5000. 0.2082 s / img. ETA=0:11:59 [06/18 01:26:07 d2.evaluation.evaluator]: Inference done 1627/5000. 0.2082 s / img. ETA=0:11:54 [06/18 01:26:12 d2.evaluation.evaluator]: Inference done 1652/5000. 0.2082 s / img. ETA=0:11:49 [06/18 01:26:18 d2.evaluation.evaluator]: Inference done 1676/5000. 0.2082 s / img. ETA=0:11:44 [06/18 01:26:23 d2.evaluation.evaluator]: Inference done 1700/5000. 0.2082 s / img. ETA=0:11:39 [06/18 01:26:28 d2.evaluation.evaluator]: Inference done 1724/5000. 0.2081 s / img. ETA=0:11:33 [06/18 01:26:33 d2.evaluation.evaluator]: Inference done 1748/5000. 0.2082 s / img. ETA=0:11:28 [06/18 01:26:38 d2.evaluation.evaluator]: Inference done 1773/5000. 0.2081 s / img. ETA=0:11:23 [06/18 01:26:43 d2.evaluation.evaluator]: Inference done 1797/5000. 0.2081 s / img. ETA=0:11:18 [06/18 01:26:48 d2.evaluation.evaluator]: Inference done 1821/5000. 0.2081 s / img. ETA=0:11:13 [06/18 01:26:53 d2.evaluation.evaluator]: Inference done 1845/5000. 0.2081 s / img. ETA=0:11:08 [06/18 01:26:58 d2.evaluation.evaluator]: Inference done 1869/5000. 0.2081 s / img. ETA=0:11:02 [06/18 01:27:03 d2.evaluation.evaluator]: Inference done 1893/5000. 0.2081 s / img. ETA=0:10:57 [06/18 01:27:09 d2.evaluation.evaluator]: Inference done 1918/5000. 0.2080 s / img. ETA=0:10:52 [06/18 01:27:14 d2.evaluation.evaluator]: Inference done 1942/5000. 0.2080 s / img. ETA=0:10:47 [06/18 01:27:19 d2.evaluation.evaluator]: Inference done 1966/5000. 0.2081 s / img. ETA=0:10:42 [06/18 01:27:24 d2.evaluation.evaluator]: Inference done 1990/5000. 0.2081 s / img. ETA=0:10:37 [06/18 01:27:29 d2.evaluation.evaluator]: Inference done 2014/5000. 0.2081 s / img. ETA=0:10:32 [06/18 01:27:34 d2.evaluation.evaluator]: Inference done 2039/5000. 0.2081 s / img. ETA=0:10:26 [06/18 01:27:39 d2.evaluation.evaluator]: Inference done 2064/5000. 0.2080 s / img. ETA=0:10:21 [06/18 01:27:45 d2.evaluation.evaluator]: Inference done 2089/5000. 0.2080 s / img. ETA=0:10:15 [06/18 01:27:50 d2.evaluation.evaluator]: Inference done 2113/5000. 0.2080 s / img. ETA=0:10:10 [06/18 01:27:55 d2.evaluation.evaluator]: Inference done 2137/5000. 0.2079 s / img. ETA=0:10:05 [06/18 01:28:00 d2.evaluation.evaluator]: Inference done 2162/5000. 0.2079 s / img. ETA=0:10:00 [06/18 01:28:05 d2.evaluation.evaluator]: Inference done 2187/5000. 0.2078 s / img. ETA=0:09:54 [06/18 01:28:10 d2.evaluation.evaluator]: Inference done 2211/5000. 0.2078 s / img. ETA=0:09:49 [06/18 01:28:15 d2.evaluation.evaluator]: Inference done 2235/5000. 0.2079 s / img. ETA=0:09:44 [06/18 01:28:20 d2.evaluation.evaluator]: Inference done 2258/5000. 0.2080 s / img. ETA=0:09:40 [06/18 01:28:25 d2.evaluation.evaluator]: Inference done 2282/5000. 0.2080 s / img. ETA=0:09:35 [06/18 01:28:31 d2.evaluation.evaluator]: Inference done 2307/5000. 0.2079 s / img. ETA=0:09:29 [06/18 01:28:36 d2.evaluation.evaluator]: Inference done 2331/5000. 0.2079 s / img. ETA=0:09:24 [06/18 01:28:41 d2.evaluation.evaluator]: Inference done 2355/5000. 0.2080 s / img. ETA=0:09:19 [06/18 01:28:46 d2.evaluation.evaluator]: Inference done 2380/5000. 0.2079 s / img. ETA=0:09:14 [06/18 01:28:51 d2.evaluation.evaluator]: Inference done 2404/5000. 0.2079 s / img. ETA=0:09:09 [06/18 01:28:56 d2.evaluation.evaluator]: Inference done 2428/5000. 0.2080 s / img. ETA=0:09:04 [06/18 01:29:01 d2.evaluation.evaluator]: Inference done 2452/5000. 0.2080 s / img. ETA=0:08:59 [06/18 01:29:06 d2.evaluation.evaluator]: Inference done 2477/5000. 0.2079 s / img. ETA=0:08:53 [06/18 01:29:12 d2.evaluation.evaluator]: Inference done 2501/5000. 0.2079 s / img. ETA=0:08:48 [06/18 01:29:17 d2.evaluation.evaluator]: Inference done 2525/5000. 0.2079 s / img. ETA=0:08:43 [06/18 01:29:22 d2.evaluation.evaluator]: Inference done 2549/5000. 0.2079 s / img. ETA=0:08:38 [06/18 01:29:27 d2.evaluation.evaluator]: Inference done 2573/5000. 0.2079 s / img. ETA=0:08:33 [06/18 01:29:32 d2.evaluation.evaluator]: Inference done 2598/5000. 0.2078 s / img. ETA=0:08:27 [06/18 01:29:37 d2.evaluation.evaluator]: Inference done 2622/5000. 0.2079 s / img. ETA=0:08:22 [06/18 01:29:42 d2.evaluation.evaluator]: Inference done 2645/5000. 0.2079 s / img. ETA=0:08:18 [06/18 01:29:47 d2.evaluation.evaluator]: Inference done 2669/5000. 0.2079 s / img. ETA=0:08:13 [06/18 01:29:52 d2.evaluation.evaluator]: Inference done 2693/5000. 0.2079 s / img. ETA=0:08:08 [06/18 01:29:57 d2.evaluation.evaluator]: Inference done 2717/5000. 0.2080 s / img. ETA=0:08:03 [06/18 01:30:03 d2.evaluation.evaluator]: Inference done 2742/5000. 0.2079 s / img. ETA=0:07:57 [06/18 01:30:08 d2.evaluation.evaluator]: Inference done 2767/5000. 0.2079 s / img. ETA=0:07:52 [06/18 01:30:13 d2.evaluation.evaluator]: Inference done 2791/5000. 0.2079 s / img. ETA=0:07:47 [06/18 01:30:18 d2.evaluation.evaluator]: Inference done 2815/5000. 0.2079 s / img. ETA=0:07:42 [06/18 01:30:23 d2.evaluation.evaluator]: Inference done 2838/5000. 0.2079 s / img. ETA=0:07:37 [06/18 01:30:28 d2.evaluation.evaluator]: Inference done 2862/5000. 0.2079 s / img. ETA=0:07:32 [06/18 01:30:33 d2.evaluation.evaluator]: Inference done 2886/5000. 0.2080 s / img. ETA=0:07:27 [06/18 01:30:38 d2.evaluation.evaluator]: Inference done 2910/5000. 0.2080 s / img. ETA=0:07:22 [06/18 01:30:43 d2.evaluation.evaluator]: Inference done 2934/5000. 0.2080 s / img. ETA=0:07:17 [06/18 01:30:49 d2.evaluation.evaluator]: Inference done 2959/5000. 0.2080 s / img. ETA=0:07:11 [06/18 01:30:54 d2.evaluation.evaluator]: Inference done 2983/5000. 0.2080 s / img. ETA=0:07:06 [06/18 01:30:59 d2.evaluation.evaluator]: Inference done 3008/5000. 0.2080 s / img. ETA=0:07:01 [06/18 01:31:04 d2.evaluation.evaluator]: Inference done 3032/5000. 0.2080 s / img. ETA=0:06:56 [06/18 01:31:09 d2.evaluation.evaluator]: Inference done 3055/5000. 0.2081 s / img. ETA=0:06:51 [06/18 01:31:14 d2.evaluation.evaluator]: Inference done 3079/5000. 0.2081 s / img. ETA=0:06:46 [06/18 01:31:19 d2.evaluation.evaluator]: Inference done 3103/5000. 0.2081 s / img. ETA=0:06:41 [06/18 01:31:24 d2.evaluation.evaluator]: Inference done 3127/5000. 0.2081 s / img. ETA=0:06:36 [06/18 01:31:30 d2.evaluation.evaluator]: Inference done 3151/5000. 0.2081 s / img. ETA=0:06:31 [06/18 01:31:35 d2.evaluation.evaluator]: Inference done 3176/5000. 0.2081 s / img. ETA=0:06:26 [06/18 01:31:40 d2.evaluation.evaluator]: Inference done 3200/5000. 0.2081 s / img. ETA=0:06:20 [06/18 01:31:45 d2.evaluation.evaluator]: Inference done 3224/5000. 0.2080 s / img. ETA=0:06:15 [06/18 01:31:50 d2.evaluation.evaluator]: Inference done 3247/5000. 0.2081 s / img. ETA=0:06:11 [06/18 01:31:55 d2.evaluation.evaluator]: Inference done 3272/5000. 0.2081 s / img. ETA=0:06:05 [06/18 01:32:00 d2.evaluation.evaluator]: Inference done 3295/5000. 0.2081 s / img. ETA=0:06:00 [06/18 01:32:05 d2.evaluation.evaluator]: Inference done 3319/5000. 0.2081 s / img. ETA=0:05:55 [06/18 01:32:10 d2.evaluation.evaluator]: Inference done 3344/5000. 0.2081 s / img. ETA=0:05:50 [06/18 01:32:15 d2.evaluation.evaluator]: Inference done 3368/5000. 0.2081 s / img. ETA=0:05:45 [06/18 01:32:20 d2.evaluation.evaluator]: Inference done 3392/5000. 0.2081 s / img. ETA=0:05:40 [06/18 01:32:26 d2.evaluation.evaluator]: Inference done 3417/5000. 0.2080 s / img. ETA=0:05:34 [06/18 01:32:31 d2.evaluation.evaluator]: Inference done 3441/5000. 0.2080 s / img. ETA=0:05:29 [06/18 01:32:36 d2.evaluation.evaluator]: Inference done 3465/5000. 0.2081 s / img. ETA=0:05:24 [06/18 01:32:41 d2.evaluation.evaluator]: Inference done 3490/5000. 0.2080 s / img. ETA=0:05:19 [06/18 01:32:46 d2.evaluation.evaluator]: Inference done 3514/5000. 0.2080 s / img. ETA=0:05:14 [06/18 01:32:51 d2.evaluation.evaluator]: Inference done 3538/5000. 0.2080 s / img. ETA=0:05:09 [06/18 01:32:56 d2.evaluation.evaluator]: Inference done 3562/5000. 0.2080 s / img. ETA=0:05:04 [06/18 01:33:01 d2.evaluation.evaluator]: Inference done 3586/5000. 0.2080 s / img. ETA=0:04:59 [06/18 01:33:07 d2.evaluation.evaluator]: Inference done 3610/5000. 0.2081 s / img. ETA=0:04:54 [06/18 01:33:12 d2.evaluation.evaluator]: Inference done 3635/5000. 0.2080 s / img. ETA=0:04:48 [06/18 01:33:17 d2.evaluation.evaluator]: Inference done 3659/5000. 0.2081 s / img. ETA=0:04:43 [06/18 01:33:22 d2.evaluation.evaluator]: Inference done 3683/5000. 0.2081 s / img. ETA=0:04:38 [06/18 01:33:27 d2.evaluation.evaluator]: Inference done 3707/5000. 0.2081 s / img. ETA=0:04:33 [06/18 01:33:32 d2.evaluation.evaluator]: Inference done 3731/5000. 0.2081 s / img. ETA=0:04:28 [06/18 01:33:37 d2.evaluation.evaluator]: Inference done 3755/5000. 0.2081 s / img. ETA=0:04:23 [06/18 01:33:42 d2.evaluation.evaluator]: Inference done 3778/5000. 0.2081 s / img. ETA=0:04:18 [06/18 01:33:47 d2.evaluation.evaluator]: Inference done 3802/5000. 0.2081 s / img. ETA=0:04:13 [06/18 01:33:52 d2.evaluation.evaluator]: Inference done 3826/5000. 0.2081 s / img. ETA=0:04:08 [06/18 01:33:57 d2.evaluation.evaluator]: Inference done 3849/5000. 0.2082 s / img. ETA=0:04:03 [06/18 01:34:03 d2.evaluation.evaluator]: Inference done 3873/5000. 0.2082 s / img. ETA=0:03:58 [06/18 01:34:08 d2.evaluation.evaluator]: Inference done 3897/5000. 0.2082 s / img. ETA=0:03:53 [06/18 01:34:13 d2.evaluation.evaluator]: Inference done 3921/5000. 0.2082 s / img. ETA=0:03:48 [06/18 01:34:18 d2.evaluation.evaluator]: Inference done 3946/5000. 0.2081 s / img. ETA=0:03:43 [06/18 01:34:23 d2.evaluation.evaluator]: Inference done 3970/5000. 0.2081 s / img. ETA=0:03:38 [06/18 01:34:28 d2.evaluation.evaluator]: Inference done 3995/5000. 0.2081 s / img. ETA=0:03:32 [06/18 01:34:33 d2.evaluation.evaluator]: Inference done 4019/5000. 0.2081 s / img. ETA=0:03:27 [06/18 01:34:38 d2.evaluation.evaluator]: Inference done 4043/5000. 0.2081 s / img. ETA=0:03:22 [06/18 01:34:43 d2.evaluation.evaluator]: Inference done 4067/5000. 0.2081 s / img. ETA=0:03:17 [06/18 01:34:48 d2.evaluation.evaluator]: Inference done 4091/5000. 0.2081 s / img. ETA=0:03:12 [06/18 01:34:53 d2.evaluation.evaluator]: Inference done 4115/5000. 0.2081 s / img. ETA=0:03:07 [06/18 01:34:59 d2.evaluation.evaluator]: Inference done 4138/5000. 0.2081 s / img. ETA=0:03:02 [06/18 01:35:04 d2.evaluation.evaluator]: Inference done 4163/5000. 0.2081 s / img. ETA=0:02:57 [06/18 01:35:09 d2.evaluation.evaluator]: Inference done 4187/5000. 0.2081 s / img. ETA=0:02:52 [06/18 01:35:14 d2.evaluation.evaluator]: Inference done 4211/5000. 0.2081 s / img. ETA=0:02:47 [06/18 01:35:19 d2.evaluation.evaluator]: Inference done 4236/5000. 0.2081 s / img. ETA=0:02:41 [06/18 01:35:24 d2.evaluation.evaluator]: Inference done 4260/5000. 0.2081 s / img. ETA=0:02:36 [06/18 01:35:29 d2.evaluation.evaluator]: Inference done 4285/5000. 0.2081 s / img. ETA=0:02:31 [06/18 01:35:34 d2.evaluation.evaluator]: Inference done 4309/5000. 0.2081 s / img. ETA=0:02:26 [06/18 01:35:40 d2.evaluation.evaluator]: Inference done 4333/5000. 0.2081 s / img. ETA=0:02:21 [06/18 01:35:45 d2.evaluation.evaluator]: Inference done 4357/5000. 0.2081 s / img. ETA=0:02:16 [06/18 01:35:50 d2.evaluation.evaluator]: Inference done 4382/5000. 0.2081 s / img. ETA=0:02:10 [06/18 01:35:55 d2.evaluation.evaluator]: Inference done 4405/5000. 0.2081 s / img. ETA=0:02:05 [06/18 01:36:00 d2.evaluation.evaluator]: Inference done 4430/5000. 0.2081 s / img. ETA=0:02:00 [06/18 01:36:05 d2.evaluation.evaluator]: Inference done 4454/5000. 0.2081 s / img. ETA=0:01:55 [06/18 01:36:10 d2.evaluation.evaluator]: Inference done 4478/5000. 0.2081 s / img. ETA=0:01:50 [06/18 01:36:15 d2.evaluation.evaluator]: Inference done 4502/5000. 0.2081 s / img. ETA=0:01:45 [06/18 01:36:20 d2.evaluation.evaluator]: Inference done 4526/5000. 0.2081 s / img. ETA=0:01:40 [06/18 01:36:26 d2.evaluation.evaluator]: Inference done 4550/5000. 0.2081 s / img. ETA=0:01:35 [06/18 01:36:31 d2.evaluation.evaluator]: Inference done 4574/5000. 0.2081 s / img. ETA=0:01:30 [06/18 01:36:36 d2.evaluation.evaluator]: Inference done 4598/5000. 0.2081 s / img. ETA=0:01:25 [06/18 01:36:41 d2.evaluation.evaluator]: Inference done 4622/5000. 0.2081 s / img. ETA=0:01:20 [06/18 01:36:46 d2.evaluation.evaluator]: Inference done 4646/5000. 0.2081 s / img. ETA=0:01:14 [06/18 01:36:51 d2.evaluation.evaluator]: Inference done 4670/5000. 0.2081 s / img. ETA=0:01:09 [06/18 01:36:56 d2.evaluation.evaluator]: Inference done 4694/5000. 0.2081 s / img. ETA=0:01:04 [06/18 01:37:01 d2.evaluation.evaluator]: Inference done 4718/5000. 0.2081 s / img. ETA=0:00:59 [06/18 01:37:06 d2.evaluation.evaluator]: Inference done 4742/5000. 0.2081 s / img. ETA=0:00:54 [06/18 01:37:11 d2.evaluation.evaluator]: Inference done 4766/5000. 0.2082 s / img. ETA=0:00:49 [06/18 01:37:17 d2.evaluation.evaluator]: Inference done 4790/5000. 0.2082 s / img. ETA=0:00:44 [06/18 01:37:22 d2.evaluation.evaluator]: Inference done 4814/5000. 0.2082 s / img. ETA=0:00:39 [06/18 01:37:27 d2.evaluation.evaluator]: Inference done 4840/5000. 0.2081 s / img. ETA=0:00:33 [06/18 01:37:32 d2.evaluation.evaluator]: Inference done 4863/5000. 0.2082 s / img. ETA=0:00:29 [06/18 01:37:37 d2.evaluation.evaluator]: Inference done 4886/5000. 0.2082 s / img. ETA=0:00:24 [06/18 01:37:42 d2.evaluation.evaluator]: Inference done 4910/5000. 0.2082 s / img. ETA=0:00:19 [06/18 01:37:47 d2.evaluation.evaluator]: Inference done 4934/5000. 0.2082 s / img. ETA=0:00:13 [06/18 01:37:52 d2.evaluation.evaluator]: Inference done 4958/5000. 0.2082 s / img. ETA=0:00:08 [06/18 01:37:57 d2.evaluation.evaluator]: Inference done 4982/5000. 0.2082 s / img. ETA=0:00:03 [06/18 01:38:01 d2.evaluation.evaluator]: Total inference time: 0:17:37.639831 (0.211740 s / img per device, on 1 devices) [06/18 01:38:01 d2.evaluation.evaluator]: Total inference pure compute time: 0:17:19 (0.208200 s / img per device, on 1 devices) [06/18 01:38:01 d2.evaluation.coco_evaluation]: Preparing results for COCO format ... [06/18 01:38:01 d2.evaluation.coco_evaluation]: Saving results to ./output/coco_instances_results.json [06/18 01:38:01 d2.evaluation.coco_evaluation]: Evaluating predictions ... Loading and preparing results... DONE (t=0.01s) creating index... index created! Running per image evaluation... Evaluate annotation type bbox DONE (t=9.96s). Accumulating evaluation results... DONE (t=1.46s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.007 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.011 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.007 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.005 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.009 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.009 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.003 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.009 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.006 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.011 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.011 [06/18 01:38:13 d2.evaluation.coco_evaluation]: Evaluation results for bbox: | AP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.677 | 1.110 | 0.731 | 0.498 | 0.895 | 0.867 |
[06/18 01:38:13 d2.evaluation.coco_evaluation]: Per-category bbox AP: | category | AP | category | AP | category | AP |
---|---|---|---|---|---|---|
person | 26.023 | bicycle | 0.003 | car | 27.923 | |
motorcycle | 0.000 | airplane | 0.011 | bus | 0.161 | |
train | 0.000 | truck | 0.000 | boat | 0.000 | |
traffic light | 0.000 | fire hydrant | 0.000 | stop sign | 0.000 | |
parking meter | 0.000 | bench | 0.000 | bird | 0.000 | |
cat | 0.000 | dog | 0.000 | horse | 0.000 | |
sheep | 0.000 | cow | 0.000 | elephant | 0.000 | |
bear | 0.000 | zebra | 0.000 | giraffe | 0.000 | |
backpack | 0.000 | umbrella | 0.000 | handbag | 0.000 | |
tie | 0.000 | suitcase | 0.000 | frisbee | 0.000 | |
skis | 0.000 | snowboard | 0.000 | sports ball | 0.000 | |
kite | 0.000 | baseball bat | 0.000 | baseball glove | 0.000 | |
skateboard | 0.000 | surfboard | 0.000 | tennis racket | 0.000 | |
bottle | 0.000 | wine glass | 0.000 | cup | 0.000 | |
fork | 0.000 | knife | 0.000 | spoon | 0.000 | |
bowl | 0.000 | banana | 0.000 | apple | 0.000 | |
sandwich | 0.000 | orange | 0.000 | broccoli | 0.000 | |
carrot | 0.000 | hot dog | 0.000 | pizza | 0.000 | |
donut | 0.000 | cake | 0.000 | chair | 0.000 | |
couch | 0.000 | potted plant | 0.000 | bed | 0.000 | |
dining table | 0.000 | toilet | 0.000 | tv | 0.000 | |
laptop | 0.000 | mouse | 0.000 | remote | 0.000 | |
keyboard | 0.000 | cell phone | 0.000 | microwave | 0.000 | |
oven | 0.000 | toaster | 0.000 | sink | 0.000 | |
refrigerator | 0.000 | book | 0.000 | clock | 0.000 | |
vase | 0.000 | scissors | 0.000 | teddy bear | 0.000 | |
hair drier | 0.000 | toothbrush | 0.000 |
Loading and preparing results... DONE (t=0.12s) creating index... index created! Running per image evaluation... Evaluate annotation type segm DONE (t=11.57s). Accumulating evaluation results... DONE (t=1.47s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.006 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.010 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.006 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.004 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.008 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.008 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.003 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.008 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.006 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.010 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.011 [06/18 01:38:26 d2.evaluation.coco_evaluation]: Evaluation results for segm: | AP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.578 | 1.047 | 0.580 | 0.383 | 0.797 | 0.847 |
[06/18 01:38:26 d2.evaluation.coco_evaluation]: Per-category segm AP: | category | AP | category | AP | category | AP |
---|---|---|---|---|---|---|
person | 21.396 | bicycle | 0.000 | car | 24.650 | |
motorcycle | 0.000 | airplane | 0.019 | bus | 0.170 | |
train | 0.000 | truck | 0.000 | boat | 0.000 | |
traffic light | 0.000 | fire hydrant | 0.000 | stop sign | 0.000 | |
parking meter | 0.000 | bench | 0.000 | bird | 0.000 | |
cat | 0.000 | dog | 0.000 | horse | 0.000 | |
sheep | 0.000 | cow | 0.000 | elephant | 0.000 | |
bear | 0.000 | zebra | 0.000 | giraffe | 0.000 | |
backpack | 0.000 | umbrella | 0.000 | handbag | 0.000 | |
tie | 0.000 | suitcase | 0.000 | frisbee | 0.000 | |
skis | 0.000 | snowboard | 0.000 | sports ball | 0.000 | |
kite | 0.000 | baseball bat | 0.000 | baseball glove | 0.000 | |
skateboard | 0.000 | surfboard | 0.000 | tennis racket | 0.000 | |
bottle | 0.000 | wine glass | 0.000 | cup | 0.000 | |
fork | 0.000 | knife | 0.000 | spoon | 0.000 | |
bowl | 0.000 | banana | 0.000 | apple | 0.000 | |
sandwich | 0.000 | orange | 0.000 | broccoli | 0.000 | |
carrot | 0.000 | hot dog | 0.000 | pizza | 0.000 | |
donut | 0.000 | cake | 0.000 | chair | 0.000 | |
couch | 0.000 | potted plant | 0.000 | bed | 0.000 | |
dining table | 0.000 | toilet | 0.000 | tv | 0.000 | |
laptop | 0.000 | mouse | 0.000 | remote | 0.000 | |
keyboard | 0.000 | cell phone | 0.000 | microwave | 0.000 | |
oven | 0.000 | toaster | 0.000 | sink | 0.000 | |
refrigerator | 0.000 | book | 0.000 | clock | 0.000 | |
vase | 0.000 | scissors | 0.000 | teddy bear | 0.000 | |
hair drier | 0.000 | toothbrush | 0.000 |
OrderedDict([('bbox', {'AP': 0.6765157823530061, 'AP-airplane': 0.010954286918053509, 'AP-apple': 0.0, 'AP-backpack': 0.0, 'AP-banana': 0.0, 'AP-baseball bat': 0.0, 'AP-baseball glove': 0.0, 'AP-bear': 0.0, 'AP-bed': 0.0, 'AP-bench': 0.0, 'AP-bicycle': 0.0030003000300030005, 'AP-bird': 0.0, 'AP-boat': 0.0, 'AP-book': 0.0, 'AP-bottle': 0.0, 'AP-bowl': 0.0, 'AP-broccoli': 0.0, 'AP-bus': 0.1606446358921606, 'AP-cake': 0.0, 'AP-car': 27.92347658943828, 'AP-carrot': 0.0, 'AP-cat': 0.0, 'AP-cell phone': 0.0, 'AP-chair': 0.0, 'AP-clock': 0.0, 'AP-couch': 0.0, 'AP-cow': 0.0, 'AP-cup': 0.0, 'AP-dining table': 0.0, 'AP-dog': 0.0, 'AP-donut': 0.0, 'AP-elephant': 0.0, 'AP-fire hydrant': 0.0, 'AP-fork': 0.0, 'AP-frisbee': 0.0, 'AP-giraffe': 0.0, 'AP-hair drier': 0.0, 'AP-handbag': 0.0, 'AP-horse': 0.0, 'AP-hot dog': 0.0, 'AP-keyboard': 0.0, 'AP-kite': 0.0, 'AP-knife': 0.0, 'AP-laptop': 0.0, 'AP-microwave': 0.0, 'AP-motorcycle': 0.0, 'AP-mouse': 0.0, 'AP-orange': 0.0, 'AP-oven': 0.0, 'AP-parking meter': 0.0, 'AP-person': 26.023186775962, 'AP-pizza': 0.0, 'AP-potted plant': 0.0, 'AP-refrigerator': 0.0, 'AP-remote': 0.0, 'AP-sandwich': 0.0, 'AP-scissors': 0.0, 'AP-sheep': 0.0, 'AP-sink': 0.0, 'AP-skateboard': 0.0, 'AP-skis': 0.0, 'AP-snowboard': 0.0, 'AP-spoon': 0.0, 'AP-sports ball': 0.0, 'AP-stop sign': 0.0, 'AP-suitcase': 0.0, 'AP-surfboard': 0.0, 'AP-teddy bear': 0.0, 'AP-tennis racket': 0.0, 'AP-tie': 0.0, 'AP-toaster': 0.0, 'AP-toilet': 0.0, 'AP-toothbrush': 0.0, 'AP-traffic light': 0.0, 'AP-train': 0.0, 'AP-truck': 0.0, 'AP-tv': 0.0, 'AP-umbrella': 0.0, 'AP-vase': 0.0, 'AP-wine glass': 0.0, 'AP-zebra': 0.0, 'AP50': 1.1102748500813617, 'AP75': 0.7311378514151442, 'APl': 0.8669782881521491, 'APm': 0.8954265799842293, 'APs': 0.4977192938998091}), ('segm', {'AP': 0.5779413641930968, 'AP-airplane': 0.018959342742784917, 'AP-apple': 0.0, 'AP-backpack': 0.0, 'AP-banana': 0.0, 'AP-baseball bat': 0.0, 'AP-baseball glove': 0.0, 'AP-bear': 0.0, 'AP-bed': 0.0, 'AP-bench': 0.0, 'AP-bicycle': 0.0, 'AP-bird': 0.0, 'AP-boat': 0.0, 'AP-book': 0.0, 'AP-bottle': 0.0, 'AP-bowl': 0.0, 'AP-broccoli': 0.0, 'AP-bus': 0.17006248008110567, 'AP-cake': 0.0, 'AP-car': 24.65024903628289, 'AP-carrot': 0.0, 'AP-cat': 0.0, 'AP-cell phone': 0.0, 'AP-chair': 0.0, 'AP-clock': 0.0, 'AP-couch': 0.0, 'AP-cow': 0.0, 'AP-cup': 0.0, 'AP-dining table': 0.0, 'AP-dog': 0.0, 'AP-donut': 0.0, 'AP-elephant': 0.0, 'AP-fire hydrant': 0.0, 'AP-fork': 0.0, 'AP-frisbee': 0.0, 'AP-giraffe': 0.0, 'AP-hair drier': 0.0, 'AP-handbag': 0.0, 'AP-horse': 0.0, 'AP-hot dog': 0.0, 'AP-keyboard': 0.0, 'AP-kite': 0.0, 'AP-knife': 0.0, 'AP-laptop': 0.0, 'AP-microwave': 0.0, 'AP-motorcycle': 0.0, 'AP-mouse': 0.0, 'AP-orange': 0.0, 'AP-oven': 0.0, 'AP-parking meter': 0.0, 'AP-person': 21.39603827634095, 'AP-pizza': 0.0, 'AP-potted plant': 0.0, 'AP-refrigerator': 0.0, 'AP-remote': 0.0, 'AP-sandwich': 0.0, 'AP-scissors': 0.0, 'AP-sheep': 0.0, 'AP-sink': 0.0, 'AP-skateboard': 0.0, 'AP-skis': 0.0, 'AP-snowboard': 0.0, 'AP-spoon': 0.0, 'AP-sports ball': 0.0, 'AP-stop sign': 0.0, 'AP-suitcase': 0.0, 'AP-surfboard': 0.0, 'AP-teddy bear': 0.0, 'AP-tennis racket': 0.0, 'AP-tie': 0.0, 'AP-toaster': 0.0, 'AP-toilet': 0.0, 'AP-toothbrush': 0.0, 'AP-traffic light': 0.0, 'AP-train': 0.0, 'AP-truck': 0.0, 'AP-tv': 0.0, 'AP-umbrella': 0.0, 'AP-vase': 0.0, 'AP-wine glass': 0.0, 'AP-zebra': 0.0, 'AP50': 1.0466826769713014, 'AP75': 0.57953910118286, 'APl': 0.847422099235734, 'APm': 0.7967171769496791, 'APs': 0.383478473018425})])
## Expected behavior:
If there are no obvious error in "what you observed" provided above,
please tell us the expected behavior.
## Environment:
Provide your environment information using the following command:
Google colab
Thanks in advance!
Xuan Long
This is working as expected because a model trained on cityscapes dataset is expected to not work on COCO dataset.
This is working as expected because a model trained on cityscapes dataset is expected to not work on COCO dataset.
Could you elaborate more why a model trained on cityscapes dataset is expected to not work on COCO dataset or could you give me more information about your point?
Thanks & BR
Dear all,
I try to evaluate the Citispace model running on the val2017 dataset from Coco dataset website and I got the matrix as follow:
git diff
)It seems that all the evaluation values are low. Does anyone give me any suggestions about this low?
Thanks in advanced!