Closed shivanshpatel35 closed 4 years ago
Hello, I guess you could try to tune 'NUM_PROCESSES' parameter higher, since you have gpu0 and gpu1 running.
Hi, can you turn logging from the simulator on? i.e. comment out these two lines: https://github.com/facebookresearch/habitat-api/blob/master/habitat_baselines/rl/ddppo/single_node.sh#L3-L4
@erikwijmans Thanks for the response. It leads to the following log
CHECKPOINT_FOLDER: new_checkpoints
CHECKPOINT_INTERVAL: 50
CMD_TRAILING_OPTS: []
ENV_NAME: NavRLEnv
EVAL:
SPLIT: val
USE_CKPT_CONFIG: True
EVAL_CKPT_PATH_DIR: new_checkpoints
LOG_FILE: train.log
LOG_INTERVAL: 10
NUM_PROCESSES: 1
NUM_UPDATES: 10000
ORBSLAM2:
ANGLE_TH: 0.2617993877991494
BETA: 100
CAMERA_HEIGHT: 1.25
DEPTH_DENORM: 10.0
DIST_REACHED_TH: 0.15
DIST_TO_STOP: 0.05
D_OBSTACLE_MAX: 4.0
D_OBSTACLE_MIN: 0.1
H_OBSTACLE_MAX: 1.25
H_OBSTACLE_MIN: 0.375
MAP_CELL_SIZE: 0.1
MAP_SIZE: 40
MIN_PTS_IN_OBSTACLE: 320.0
NEXT_WAYPOINT_TH: 0.5
NUM_ACTIONS: 3
PLANNER_MAX_STEPS: 500
PREPROCESS_MAP: True
SLAM_SETTINGS_PATH: habitat_baselines/slambased/data/mp3d3_small1k.yaml
SLAM_VOCAB_PATH: habitat_baselines/slambased/data/ORBvoc.txt
RL:
DDPPO:
backbone: resnet50
distrib_backend: NCCL
num_recurrent_layers: 2
pretrained: False
pretrained_encoder: False
pretrained_weights: data/ddppo-models/gibson-2plus-resnet50.pth
reset_critic: True
rnn_type: LSTM
sync_frac: 0.6
train_encoder: True
PPO:
clip_param: 0.2
entropy_coef: 0.01
eps: 1e-05
gamma: 0.99
hidden_size: 512
lr: 2.5e-06
max_grad_norm: 0.2
num_mini_batch: 2
num_steps: 128
ppo_epoch: 2
reward_window_size: 50
tau: 0.95
use_gae: True
use_linear_clip_decay: False
use_linear_lr_decay: False
use_normalized_advantage: False
value_loss_coef: 0.5
REWARD_MEASURE: distance_to_goal
SLACK_REWARD: -0.01
SUCCESS_MEASURE: spl
SUCCESS_REWARD: 2.5
SENSORS: ['DEPTH_SENSOR', 'RGB_SENSOR']
SIMULATOR_GPU_ID: 0
TASK_CONFIG:
DATASET:
CONTENT_SCENES: []
DATA_PATH: data/datasets/objectnav/mp3d/v0/{split}/{split}.json.gz
SCENES_DIR: data/scene_datasets/
SPLIT: val
TYPE: ObjectNav-v1
ENVIRONMENT:
ITERATOR_OPTIONS:
CYCLE: True
GROUP_BY_SCENE: True
MAX_SCENE_REPEAT_EPISODES: -1
MAX_SCENE_REPEAT_STEPS: 10000
NUM_EPISODE_SAMPLE: -1
SHUFFLE: True
STEP_REPETITION_RANGE: 0.2
MAX_EPISODE_SECONDS: 10000000
MAX_EPISODE_STEPS: 500
PYROBOT:
BASE_CONTROLLER: proportional
BASE_PLANNER: none
BUMP_SENSOR:
TYPE: PyRobotBumpSensor
DEPTH_SENSOR:
CENTER_CROP: False
HEIGHT: 480
MAX_DEPTH: 5.0
MIN_DEPTH: 0.0
NORMALIZE_DEPTH: True
TYPE: PyRobotDepthSensor
WIDTH: 640
LOCOBOT:
ACTIONS: ['BASE_ACTIONS', 'CAMERA_ACTIONS']
BASE_ACTIONS: ['go_to_relative', 'go_to_absolute']
CAMERA_ACTIONS: ['set_pan', 'set_tilt', 'set_pan_tilt']
RGB_SENSOR:
CENTER_CROP: False
HEIGHT: 480
TYPE: PyRobotRGBSensor
WIDTH: 640
ROBOT: locobot
ROBOTS: ['locobot']
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR', 'BUMP_SENSOR']
SEED: 100
SIMULATOR:
ACTION_SPACE_CONFIG: v1
AGENTS: ['AGENT_0']
AGENT_0:
ANGULAR_ACCELERATION: 12.56
ANGULAR_FRICTION: 1.0
COEFFICIENT_OF_RESTITUTION: 0.0
HEIGHT: 0.88
IS_SET_START_STATE: False
LINEAR_ACCELERATION: 20.0
LINEAR_FRICTION: 0.5
MASS: 32.0
RADIUS: 0.2
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR']
START_POSITION: [0, 0, 0]
START_ROTATION: [0, 0, 0, 1]
DEFAULT_AGENT_ID: 0
DEPTH_SENSOR:
HEIGHT: 480
HFOV: 79
MAX_DEPTH: 5.0
MIN_DEPTH: 0.5
NORMALIZE_DEPTH: True
POSITION: [0, 0.88, 0]
TYPE: HabitatSimDepthSensor
WIDTH: 640
FORWARD_STEP_SIZE: 0.25
HABITAT_SIM_V0:
ALLOW_SLIDING: True
ENABLE_PHYSICS: False
GPU_DEVICE_ID: 0
GPU_GPU: False
PHYSICS_CONFIG_FILE: ./data/default.phys_scene_config.json
RGB_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimRGBSensor
WIDTH: 640
SCENE: data/scene_datasets/habitat-test-scenes/van-gogh-room.glb
SEED: 100
SEMANTIC_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimSemanticSensor
WIDTH: 640
TILT_ANGLE: 30
TURN_ANGLE: 30
TYPE: Sim-v0
TASK:
ACTIONS:
ANSWER:
TYPE: AnswerAction
LOOK_DOWN:
TYPE: LookDownAction
LOOK_UP:
TYPE: LookUpAction
MOVE_FORWARD:
TYPE: MoveForwardAction
STOP:
TYPE: StopAction
TELEPORT:
TYPE: TeleportAction
TURN_LEFT:
TYPE: TurnLeftAction
TURN_RIGHT:
TYPE: TurnRightAction
ANSWER_ACCURACY:
TYPE: AnswerAccuracy
COLLISIONS:
TYPE: Collisions
COMPASS_SENSOR:
TYPE: CompassSensor
CORRECT_ANSWER:
TYPE: CorrectAnswer
DISTANCE_TO_GOAL:
DISTANCE_TO: VIEW_POINTS
TYPE: DistanceToGoal
EPISODE_INFO:
TYPE: EpisodeInfo
GOAL_SENSOR_UUID: objectgoal
GPS_SENSOR:
DIMENSIONALITY: 2
TYPE: GPSSensor
HEADING_SENSOR:
TYPE: HeadingSensor
INSTRUCTION_SENSOR:
TYPE: InstructionSensor
INSTRUCTION_SENSOR_UUID: instruction
MEASUREMENTS: ['DISTANCE_TO_GOAL', 'SPL']
OBJECTGOAL_SENSOR:
GOAL_SPEC: TASK_CATEGORY_ID
GOAL_SPEC_MAX_VAL: 50
TYPE: ObjectGoalSensor
POINTGOAL_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalSensor
POINTGOAL_WITH_GPS_COMPASS_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalWithGPSCompassSensor
POSSIBLE_ACTIONS: ['STOP', 'MOVE_FORWARD', 'TURN_LEFT', 'TURN_RIGHT', 'LOOK_UP', 'LOOK_DOWN']
PROXIMITY_SENSOR:
MAX_DETECTION_RADIUS: 2.0
TYPE: ProximitySensor
QUESTION_SENSOR:
TYPE: QuestionSensor
SENSORS: ['OBJECTGOAL_SENSOR', 'COMPASS_SENSOR', 'GPS_SENSOR']
SPL:
DISTANCE_TO: VIEW_POINTS
SUCCESS_DISTANCE: 0.2
TYPE: SPL
SUCCESS_DISTANCE: 0.1
TOP_DOWN_MAP:
DRAW_BORDER: True
DRAW_GOAL_AABBS: True
DRAW_GOAL_POSITIONS: True
DRAW_SHORTEST_PATH: True
DRAW_SOURCE: True
DRAW_VIEW_POINTS: True
FOG_OF_WAR:
DRAW: True
FOV: 90
VISIBILITY_DIST: 5.0
MAP_PADDING: 3
MAP_RESOLUTION: 1250
MAX_EPISODE_STEPS: 1000
NUM_TOPDOWN_MAP_SAMPLE_POINTS: 20000
TYPE: TopDownMap
TYPE: ObjectNav-v1
TENSORBOARD_DIR: tb1
TEST_EPISODE_COUNT: 2184
TORCH_GPU_ID: 1
TRAINER_NAME: ppo
VIDEO_DIR: video_dir
VIDEO_OPTION: ['disk', 'tensorboard']
2020-02-21 08:44:06,775 Initializing dataset ObjectNav-v1
2020-02-21 08:44:28,211 Initializing dataset ObjectNav-v1
2020-02-21 08:44:47,723 initializing sim Sim-v0
Renderer: GeForce RTX 2080 Ti/PCIe/SSE2 by NVIDIA Corporation
OpenGL version: 4.6.0 NVIDIA 440.33.01
Using optional features:
GL_ARB_ES2_compatibility
GL_ARB_direct_state_access
GL_ARB_get_texture_sub_image
GL_ARB_invalidate_subdata
GL_ARB_multi_bind
GL_ARB_robustness
GL_ARB_separate_shader_objects
GL_ARB_texture_filter_anisotropic
GL_ARB_texture_storage
GL_ARB_texture_storage_multisample
GL_ARB_vertex_array_object
GL_KHR_debug
Using driver workarounds:
no-layout-qualifiers-on-old-glsl
nv-zero-context-profile-mask
nv-implementation-color-read-format-dsa-broken
nv-cubemap-inconsistent-compressed-image-size
nv-cubemap-broken-full-compressed-image-query
nv-compressed-block-size-in-bits
WARNING: Logging before InitGoogleLogging() is written to STDERR
I0221 08:44:47.865471 21422 ResourceManager.cpp:1054] Importing Basis files as BC7
I0221 08:44:52.729718 21422 Simulator.cpp:112] Loading house from data/scene_datasets/mp3d/QUCTc6BB5sX/QUCTc6BB5sX.house
I0221 08:44:52.729732 21422 Simulator.cpp:118] Loading semantic mesh data/scene_datasets/mp3d/QUCTc6BB5sX/QUCTc6BB5sX_semantic.ply
I0221 08:45:01.464468 21422 Simulator.cpp:130] Loaded.
I0221 08:45:01.571860 21422 simulator.py:142] Loaded navmesh data/scene_datasets/mp3d/QUCTc6BB5sX/QUCTc6BB5sX.navmesh
2020-02-21 08:45:01,577 Initializing task ObjectNav-v1
2020-02-21 08:45:04,926 agent number of parameters: 71371399
Traceback (most recent call last):
File "habitat_baselines/run.py", line 68, in <module>
main()
File "habitat_baselines/run.py", line 38, in main
run_exp(**vars(args))
File "habitat_baselines/run.py", line 62, in run_exp
trainer.train()
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 300, in train
episode_counts,
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 146, in _collect_rollout_step
outputs = self.envs.step([a[0].item() for a in actions])
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 339, in step
return self.wait_step()
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 326, in wait_step
observations.append(read_fn())
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 383, in _recv
raise EOFError
EOFError
Exception ignored in: <bound method VectorEnv.__del__ of <habitat.core.vector_env.VectorEnv object at 0x7fd7b6769898>>
Traceback (most recent call last):
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 468, in __del__
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 347, in close
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 250, in recv
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 375, in _recv
AttributeError: 'NoneType' object has no attribute 'BytesIO'
Traceback (most recent call last):
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/torch-1.4.0-py3.6-linux-x86_64.egg/torch/distributed/launch.py", line 263, in <module>
main()
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/torch-1.4.0-py3.6-linux-x86_64.egg/torch/distributed/launch.py", line 259, in main
cmd=cmd)
subprocess.CalledProcessError: Command '['/local-scratch/anaconda3/envs/habitat/bin/python', '-u', 'habitat_baselines/run.py', '--exp-config', 'habitat_baselines/config/objectnav/ddppo_objectnav.yaml', '--run-type', 'train']' returned non-zero exit status 1.```
I don't see anything from EGL in the logs, indicating that habitat-sim was built without --headless
? Habitat-sim needs to be built with --headless
to leverage multiple GPUs.
I installed Habitat-sim using --headless
flag. But I reinstalled it in a new environment just for peace of mind. I am still getting the error log -
2020-02-21 11:54:40,275 config: BASE_TASK_CONFIG_PATH: configs/tasks/objectnav_mp3d.yaml
CHECKPOINT_FOLDER: new_checkpoints
CHECKPOINT_INTERVAL: 50
CMD_TRAILING_OPTS: []
ENV_NAME: NavRLEnv
EVAL:
SPLIT: val
USE_CKPT_CONFIG: True
EVAL_CKPT_PATH_DIR: new_checkpoints
LOG_FILE: train.log
LOG_INTERVAL: 10
NUM_PROCESSES: 1
NUM_UPDATES: 10000
ORBSLAM2:
ANGLE_TH: 0.2617993877991494
BETA: 100
CAMERA_HEIGHT: 1.25
DEPTH_DENORM: 10.0
DIST_REACHED_TH: 0.15
DIST_TO_STOP: 0.05
D_OBSTACLE_MAX: 4.0
D_OBSTACLE_MIN: 0.1
H_OBSTACLE_MAX: 1.25
H_OBSTACLE_MIN: 0.375
MAP_CELL_SIZE: 0.1
MAP_SIZE: 40
MIN_PTS_IN_OBSTACLE: 320.0
NEXT_WAYPOINT_TH: 0.5
NUM_ACTIONS: 3
PLANNER_MAX_STEPS: 500
PREPROCESS_MAP: True
SLAM_SETTINGS_PATH: habitat_baselines/slambased/data/mp3d3_small1k.yaml
SLAM_VOCAB_PATH: habitat_baselines/slambased/data/ORBvoc.txt
RL:
DDPPO:
backbone: resnet50
distrib_backend: NCCL
num_recurrent_layers: 2
pretrained: False
pretrained_encoder: False
pretrained_weights: data/ddppo-models/gibson-2plus-resnet50.pth
reset_critic: True
rnn_type: LSTM
sync_frac: 0.6
train_encoder: True
PPO:
clip_param: 0.2
entropy_coef: 0.01
eps: 1e-05
gamma: 0.99
hidden_size: 512
lr: 2.5e-06
max_grad_norm: 0.2
num_mini_batch: 1
num_steps: 128
ppo_epoch: 2
reward_window_size: 50
tau: 0.95
use_gae: True
use_linear_clip_decay: False
use_linear_lr_decay: False
use_normalized_advantage: False
value_loss_coef: 0.5
REWARD_MEASURE: distance_to_goal
SLACK_REWARD: -0.01
SUCCESS_MEASURE: spl
SUCCESS_REWARD: 2.5
SENSORS: ['DEPTH_SENSOR', 'RGB_SENSOR']
SIMULATOR_GPU_ID: 0
TASK_CONFIG:
DATASET:
CONTENT_SCENES: []
DATA_PATH: data/datasets/objectnav/mp3d/v0/{split}/{split}.json.gz
SCENES_DIR: data/scene_datasets/
SPLIT: val
TYPE: ObjectNav-v1
ENVIRONMENT:
ITERATOR_OPTIONS:
CYCLE: True
GROUP_BY_SCENE: True
MAX_SCENE_REPEAT_EPISODES: -1
MAX_SCENE_REPEAT_STEPS: 10000
NUM_EPISODE_SAMPLE: -1
SHUFFLE: True
STEP_REPETITION_RANGE: 0.2
MAX_EPISODE_SECONDS: 10000000
MAX_EPISODE_STEPS: 500
PYROBOT:
BASE_CONTROLLER: proportional
BASE_PLANNER: none
BUMP_SENSOR:
TYPE: PyRobotBumpSensor
DEPTH_SENSOR:
CENTER_CROP: False
HEIGHT: 480
MAX_DEPTH: 5.0
MIN_DEPTH: 0.0
NORMALIZE_DEPTH: True
TYPE: PyRobotDepthSensor
WIDTH: 640
LOCOBOT:
ACTIONS: ['BASE_ACTIONS', 'CAMERA_ACTIONS']
BASE_ACTIONS: ['go_to_relative', 'go_to_absolute']
CAMERA_ACTIONS: ['set_pan', 'set_tilt', 'set_pan_tilt']
RGB_SENSOR:
CENTER_CROP: False
HEIGHT: 480
TYPE: PyRobotRGBSensor
WIDTH: 640
ROBOT: locobot
ROBOTS: ['locobot']
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR', 'BUMP_SENSOR']
SEED: 100
SIMULATOR:
ACTION_SPACE_CONFIG: v1
AGENTS: ['AGENT_0']
AGENT_0:
ANGULAR_ACCELERATION: 12.56
ANGULAR_FRICTION: 1.0
COEFFICIENT_OF_RESTITUTION: 0.0
HEIGHT: 0.88
IS_SET_START_STATE: False
LINEAR_ACCELERATION: 20.0
LINEAR_FRICTION: 0.5
MASS: 32.0
RADIUS: 0.2
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR']
START_POSITION: [0, 0, 0]
START_ROTATION: [0, 0, 0, 1]
DEFAULT_AGENT_ID: 0
DEPTH_SENSOR:
HEIGHT: 480
HFOV: 79
MAX_DEPTH: 5.0
MIN_DEPTH: 0.5
NORMALIZE_DEPTH: True
POSITION: [0, 0.88, 0]
TYPE: HabitatSimDepthSensor
WIDTH: 640
FORWARD_STEP_SIZE: 0.25
HABITAT_SIM_V0:
ALLOW_SLIDING: True
ENABLE_PHYSICS: False
GPU_DEVICE_ID: 0
GPU_GPU: False
PHYSICS_CONFIG_FILE: ./data/default.phys_scene_config.json
RGB_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimRGBSensor
WIDTH: 640
SCENE: data/scene_datasets/habitat-test-scenes/van-gogh-room.glb
SEED: 100
SEMANTIC_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimSemanticSensor
WIDTH: 640
TILT_ANGLE: 30
TURN_ANGLE: 30
TYPE: Sim-v0
TASK:
ACTIONS:
ANSWER:
TYPE: AnswerAction
LOOK_DOWN:
TYPE: LookDownAction
LOOK_UP:
TYPE: LookUpAction
MOVE_FORWARD:
TYPE: MoveForwardAction
STOP:
TYPE: StopAction
TELEPORT:
TYPE: TeleportAction
TURN_LEFT:
TYPE: TurnLeftAction
TURN_RIGHT:
TYPE: TurnRightAction
ANSWER_ACCURACY:
TYPE: AnswerAccuracy
COLLISIONS:
TYPE: Collisions
COMPASS_SENSOR:
TYPE: CompassSensor
CORRECT_ANSWER:
TYPE: CorrectAnswer
DISTANCE_TO_GOAL:
DISTANCE_TO: VIEW_POINTS
TYPE: DistanceToGoal
EPISODE_INFO:
TYPE: EpisodeInfo
GOAL_SENSOR_UUID: objectgoal
GPS_SENSOR:
DIMENSIONALITY: 2
TYPE: GPSSensor
HEADING_SENSOR:
TYPE: HeadingSensor
INSTRUCTION_SENSOR:
TYPE: InstructionSensor
INSTRUCTION_SENSOR_UUID: instruction
MEASUREMENTS: ['DISTANCE_TO_GOAL', 'SPL']
OBJECTGOAL_SENSOR:
GOAL_SPEC: TASK_CATEGORY_ID
GOAL_SPEC_MAX_VAL: 50
TYPE: ObjectGoalSensor
POINTGOAL_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalSensor
POINTGOAL_WITH_GPS_COMPASS_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalWithGPSCompassSensor
POSSIBLE_ACTIONS: ['STOP', 'MOVE_FORWARD', 'TURN_LEFT', 'TURN_RIGHT', 'LOOK_UP', 'LOOK_DOWN']
PROXIMITY_SENSOR:
MAX_DETECTION_RADIUS: 2.0
TYPE: ProximitySensor
QUESTION_SENSOR:
TYPE: QuestionSensor
SENSORS: ['OBJECTGOAL_SENSOR', 'COMPASS_SENSOR', 'GPS_SENSOR']
SPL:
DISTANCE_TO: VIEW_POINTS
SUCCESS_DISTANCE: 0.2
TYPE: SPL
SUCCESS_DISTANCE: 0.1
TOP_DOWN_MAP:
DRAW_BORDER: True
DRAW_GOAL_AABBS: True
DRAW_GOAL_POSITIONS: True
DRAW_SHORTEST_PATH: True
DRAW_SOURCE: True
DRAW_VIEW_POINTS: True
FOG_OF_WAR:
DRAW: True
FOV: 90
VISIBILITY_DIST: 5.0
MAP_PADDING: 3
MAP_RESOLUTION: 1250
MAX_EPISODE_STEPS: 1000
NUM_TOPDOWN_MAP_SAMPLE_POINTS: 20000
TYPE: TopDownMap
TYPE: ObjectNav-v1
TENSORBOARD_DIR: tb1
TEST_EPISODE_COUNT: 2184
TORCH_GPU_ID: 1
TRAINER_NAME: ppo
VIDEO_DIR: video_dir
VIDEO_OPTION: ['disk', 'tensorboard']
2020-02-21 11:54:40,275 Initializing dataset ObjectNav-v1
2020-02-21 11:55:01,109 Initializing dataset ObjectNav-v1
2020-02-21 11:55:20,310 initializing sim Sim-v0
Renderer: GeForce RTX 2080 Ti/PCIe/SSE2 by NVIDIA Corporation
OpenGL version: 4.6.0 NVIDIA 440.33.01
Using optional features:
GL_ARB_ES2_compatibility
GL_ARB_direct_state_access
GL_ARB_get_texture_sub_image
GL_ARB_invalidate_subdata
GL_ARB_multi_bind
GL_ARB_robustness
GL_ARB_separate_shader_objects
GL_ARB_texture_filter_anisotropic
GL_ARB_texture_storage
GL_ARB_texture_storage_multisample
GL_ARB_vertex_array_object
GL_KHR_debug
Using driver workarounds:
no-layout-qualifiers-on-old-glsl
nv-zero-context-profile-mask
nv-implementation-color-read-format-dsa-broken
nv-cubemap-inconsistent-compressed-image-size
nv-cubemap-broken-full-compressed-image-query
nv-compressed-block-size-in-bits
WARNING: Logging before InitGoogleLogging() is written to STDERR
I0221 11:55:20.444175 21072 ResourceManager.cpp:1054] Importing Basis files as BC7
I0221 11:55:25.973668 21072 Simulator.cpp:112] Loading house from data/scene_datasets/mp3d/Z6MFQCViBuw/Z6MFQCViBuw.house
I0221 11:55:25.973683 21072 Simulator.cpp:118] Loading semantic mesh data/scene_datasets/mp3d/Z6MFQCViBuw/Z6MFQCViBuw_semantic.ply
I0221 11:55:29.180565 21072 Simulator.cpp:130] Loaded.
I0221 11:55:29.239537 21072 simulator.py:142] Loaded navmesh data/scene_datasets/mp3d/Z6MFQCViBuw/Z6MFQCViBuw.navmesh
2020-02-21 11:55:29,242 Initializing task ObjectNav-v1
2020-02-21 11:55:31,141 agent number of parameters: 71371399
Traceback (most recent call last):
File "habitat_baselines/run.py", line 68, in <module>
main()
File "habitat_baselines/run.py", line 38, in main
run_exp(**vars(args))
File "habitat_baselines/run.py", line 62, in run_exp
trainer.train()
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 300, in train
episode_counts,
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 146, in _collect_rollout_step
outputs = self.envs.step([a[0].item() for a in actions])
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 339, in step
return self.wait_step()
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 326, in wait_step
observations.append(read_fn())
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 383, in _recv
raise EOFError
EOFError
Exception ignored in: <bound method VectorEnv.__del__ of <habitat.core.vector_env.VectorEnv object at 0x7fb05648e668>>
Traceback (most recent call last):
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 468, in __del__
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 347, in close
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 250, in recv
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 375, in _recv
AttributeError: 'NoneType' object has no attribute 'BytesIO'
Traceback (most recent call last):
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/site-packages/torch-1.4.0-py3.6-linux-x86_64.egg/torch/distributed/launch.py", line 263, in <module>
main()
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/site-packages/torch-1.4.0-py3.6-linux-x86_64.egg/torch/distributed/launch.py", line 259, in main
cmd=cmd)
subprocess.CalledProcessError: Command '['/local-scratch/anaconda3/envs/habitat2/bin/python', '-u', 'habitat_baselines/run.py', '--exp-config', 'habitat_baselines/config/objectnav/ddppo_objectnav.yaml', '--run-type', 'train']' returned non-zero exit status 1
I also tried running both simulator and model on one GPU but the error persists. Following is the error log:
2020-02-21 11:58:13,065 config: BASE_TASK_CONFIG_PATH: configs/tasks/objectnav_mp3d.yaml
CHECKPOINT_FOLDER: new_checkpoints
CHECKPOINT_INTERVAL: 50
CMD_TRAILING_OPTS: []
ENV_NAME: NavRLEnv
EVAL:
SPLIT: val
USE_CKPT_CONFIG: True
EVAL_CKPT_PATH_DIR: new_checkpoints
LOG_FILE: train.log
LOG_INTERVAL: 10
NUM_PROCESSES: 1
NUM_UPDATES: 10000
ORBSLAM2:
ANGLE_TH: 0.2617993877991494
BETA: 100
CAMERA_HEIGHT: 1.25
DEPTH_DENORM: 10.0
DIST_REACHED_TH: 0.15
DIST_TO_STOP: 0.05
D_OBSTACLE_MAX: 4.0
D_OBSTACLE_MIN: 0.1
H_OBSTACLE_MAX: 1.25
H_OBSTACLE_MIN: 0.375
MAP_CELL_SIZE: 0.1
MAP_SIZE: 40
MIN_PTS_IN_OBSTACLE: 320.0
NEXT_WAYPOINT_TH: 0.5
NUM_ACTIONS: 3
PLANNER_MAX_STEPS: 500
PREPROCESS_MAP: True
SLAM_SETTINGS_PATH: habitat_baselines/slambased/data/mp3d3_small1k.yaml
SLAM_VOCAB_PATH: habitat_baselines/slambased/data/ORBvoc.txt
RL:
DDPPO:
backbone: resnet50
distrib_backend: NCCL
num_recurrent_layers: 2
pretrained: False
pretrained_encoder: False
pretrained_weights: data/ddppo-models/gibson-2plus-resnet50.pth
reset_critic: True
rnn_type: LSTM
sync_frac: 0.6
train_encoder: True
PPO:
clip_param: 0.2
entropy_coef: 0.01
eps: 1e-05
gamma: 0.99
hidden_size: 512
lr: 2.5e-06
max_grad_norm: 0.2
num_mini_batch: 1
num_steps: 128
ppo_epoch: 2
reward_window_size: 50
tau: 0.95
use_gae: True
use_linear_clip_decay: False
use_linear_lr_decay: False
use_normalized_advantage: False
value_loss_coef: 0.5
REWARD_MEASURE: distance_to_goal
SLACK_REWARD: -0.01
SUCCESS_MEASURE: spl
SUCCESS_REWARD: 2.5
SENSORS: ['DEPTH_SENSOR', 'RGB_SENSOR']
SIMULATOR_GPU_ID: 0
TASK_CONFIG:
DATASET:
CONTENT_SCENES: []
DATA_PATH: data/datasets/objectnav/mp3d/v0/{split}/{split}.json.gz
SCENES_DIR: data/scene_datasets/
SPLIT: val
TYPE: ObjectNav-v1
ENVIRONMENT:
ITERATOR_OPTIONS:
CYCLE: True
GROUP_BY_SCENE: True
MAX_SCENE_REPEAT_EPISODES: -1
MAX_SCENE_REPEAT_STEPS: 10000
NUM_EPISODE_SAMPLE: -1
SHUFFLE: True
STEP_REPETITION_RANGE: 0.2
MAX_EPISODE_SECONDS: 10000000
MAX_EPISODE_STEPS: 500
PYROBOT:
BASE_CONTROLLER: proportional
BASE_PLANNER: none
BUMP_SENSOR:
TYPE: PyRobotBumpSensor
DEPTH_SENSOR:
CENTER_CROP: False
HEIGHT: 480
MAX_DEPTH: 5.0
MIN_DEPTH: 0.0
NORMALIZE_DEPTH: True
TYPE: PyRobotDepthSensor
WIDTH: 640
LOCOBOT:
ACTIONS: ['BASE_ACTIONS', 'CAMERA_ACTIONS']
BASE_ACTIONS: ['go_to_relative', 'go_to_absolute']
CAMERA_ACTIONS: ['set_pan', 'set_tilt', 'set_pan_tilt']
RGB_SENSOR:
CENTER_CROP: False
HEIGHT: 480
TYPE: PyRobotRGBSensor
WIDTH: 640
ROBOT: locobot
ROBOTS: ['locobot']
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR', 'BUMP_SENSOR']
SEED: 100
SIMULATOR:
ACTION_SPACE_CONFIG: v1
AGENTS: ['AGENT_0']
AGENT_0:
ANGULAR_ACCELERATION: 12.56
ANGULAR_FRICTION: 1.0
COEFFICIENT_OF_RESTITUTION: 0.0
HEIGHT: 0.88
IS_SET_START_STATE: False
LINEAR_ACCELERATION: 20.0
LINEAR_FRICTION: 0.5
MASS: 32.0
RADIUS: 0.2
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR']
START_POSITION: [0, 0, 0]
START_ROTATION: [0, 0, 0, 1]
DEFAULT_AGENT_ID: 0
DEPTH_SENSOR:
HEIGHT: 480
HFOV: 79
MAX_DEPTH: 5.0
MIN_DEPTH: 0.5
NORMALIZE_DEPTH: True
POSITION: [0, 0.88, 0]
TYPE: HabitatSimDepthSensor
WIDTH: 640
FORWARD_STEP_SIZE: 0.25
HABITAT_SIM_V0:
ALLOW_SLIDING: True
ENABLE_PHYSICS: False
GPU_DEVICE_ID: 0
GPU_GPU: False
PHYSICS_CONFIG_FILE: ./data/default.phys_scene_config.json
RGB_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimRGBSensor
WIDTH: 640
SCENE: data/scene_datasets/habitat-test-scenes/van-gogh-room.glb
SEED: 100
SEMANTIC_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimSemanticSensor
WIDTH: 640
TILT_ANGLE: 30
TURN_ANGLE: 30
TYPE: Sim-v0
TASK:
ACTIONS:
ANSWER:
TYPE: AnswerAction
LOOK_DOWN:
TYPE: LookDownAction
LOOK_UP:
TYPE: LookUpAction
MOVE_FORWARD:
TYPE: MoveForwardAction
STOP:
TYPE: StopAction
TELEPORT:
TYPE: TeleportAction
TURN_LEFT:
TYPE: TurnLeftAction
TURN_RIGHT:
TYPE: TurnRightAction
ANSWER_ACCURACY:
TYPE: AnswerAccuracy
COLLISIONS:
TYPE: Collisions
COMPASS_SENSOR:
TYPE: CompassSensor
CORRECT_ANSWER:
TYPE: CorrectAnswer
DISTANCE_TO_GOAL:
DISTANCE_TO: VIEW_POINTS
TYPE: DistanceToGoal
EPISODE_INFO:
TYPE: EpisodeInfo
GOAL_SENSOR_UUID: objectgoal
GPS_SENSOR:
DIMENSIONALITY: 2
TYPE: GPSSensor
HEADING_SENSOR:
TYPE: HeadingSensor
INSTRUCTION_SENSOR:
TYPE: InstructionSensor
INSTRUCTION_SENSOR_UUID: instruction
MEASUREMENTS: ['DISTANCE_TO_GOAL', 'SPL']
OBJECTGOAL_SENSOR:
GOAL_SPEC: TASK_CATEGORY_ID
GOAL_SPEC_MAX_VAL: 50
TYPE: ObjectGoalSensor
POINTGOAL_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalSensor
POINTGOAL_WITH_GPS_COMPASS_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalWithGPSCompassSensor
POSSIBLE_ACTIONS: ['STOP', 'MOVE_FORWARD', 'TURN_LEFT', 'TURN_RIGHT', 'LOOK_UP', 'LOOK_DOWN']
PROXIMITY_SENSOR:
MAX_DETECTION_RADIUS: 2.0
TYPE: ProximitySensor
QUESTION_SENSOR:
TYPE: QuestionSensor
SENSORS: ['OBJECTGOAL_SENSOR', 'COMPASS_SENSOR', 'GPS_SENSOR']
SPL:
DISTANCE_TO: VIEW_POINTS
SUCCESS_DISTANCE: 0.2
TYPE: SPL
SUCCESS_DISTANCE: 0.1
TOP_DOWN_MAP:
DRAW_BORDER: True
DRAW_GOAL_AABBS: True
DRAW_GOAL_POSITIONS: True
DRAW_SHORTEST_PATH: True
DRAW_SOURCE: True
DRAW_VIEW_POINTS: True
FOG_OF_WAR:
DRAW: True
FOV: 90
VISIBILITY_DIST: 5.0
MAP_PADDING: 3
MAP_RESOLUTION: 1250
MAX_EPISODE_STEPS: 1000
NUM_TOPDOWN_MAP_SAMPLE_POINTS: 20000
TYPE: TopDownMap
TYPE: ObjectNav-v1
TENSORBOARD_DIR: tb1
TEST_EPISODE_COUNT: 2184
TORCH_GPU_ID: 0
TRAINER_NAME: ppo
VIDEO_DIR: video_dir
VIDEO_OPTION: ['disk', 'tensorboard']
2020-02-21 11:58:13,065 Initializing dataset ObjectNav-v1
2020-02-21 11:58:35,118 Initializing dataset ObjectNav-v1
2020-02-21 11:58:54,832 initializing sim Sim-v0
Renderer: GeForce RTX 2080 Ti/PCIe/SSE2 by NVIDIA Corporation
OpenGL version: 4.6.0 NVIDIA 440.33.01
Using optional features:
GL_ARB_ES2_compatibility
GL_ARB_direct_state_access
GL_ARB_get_texture_sub_image
GL_ARB_invalidate_subdata
GL_ARB_multi_bind
GL_ARB_robustness
GL_ARB_separate_shader_objects
GL_ARB_texture_filter_anisotropic
GL_ARB_texture_storage
GL_ARB_texture_storage_multisample
GL_ARB_vertex_array_object
GL_KHR_debug
Using driver workarounds:
no-layout-qualifiers-on-old-glsl
nv-zero-context-profile-mask
nv-implementation-color-read-format-dsa-broken
nv-cubemap-inconsistent-compressed-image-size
nv-cubemap-broken-full-compressed-image-query
nv-compressed-block-size-in-bits
WARNING: Logging before InitGoogleLogging() is written to STDERR
I0221 11:58:55.015694 21426 ResourceManager.cpp:1054] Importing Basis files as BC7
I0221 11:58:56.439661 21426 Simulator.cpp:112] Loading house from data/scene_datasets/mp3d/pLe4wQe7qrG/pLe4wQe7qrG.house
I0221 11:58:56.439679 21426 Simulator.cpp:118] Loading semantic mesh data/scene_datasets/mp3d/pLe4wQe7qrG/pLe4wQe7qrG_semantic.ply
I0221 11:58:57.127120 21426 Simulator.cpp:130] Loaded.
I0221 11:58:57.144647 21426 simulator.py:142] Loaded navmesh data/scene_datasets/mp3d/pLe4wQe7qrG/pLe4wQe7qrG.navmesh
2020-02-21 11:58:57,146 Initializing task ObjectNav-v1
2020-02-21 11:58:59,754 agent number of parameters: 71371399
I0221 11:59:20.487156 21426 Simulator.cpp:35] Deconstructing Simulator
I0221 11:59:20.487174 21426 SemanticScene.h:40] Deconstructing SemanticScene
I0221 11:59:20.487610 21426 SceneManager.h:24] Deconstructing SceneManager
I0221 11:59:20.487617 21426 SceneGraph.h:20] Deconstructing SceneGraph
I0221 11:59:20.487627 21426 RenderTarget.h:51] Deconstructing RenderTarget
I0221 11:59:20.488035 21426 Sensor.h:80] Deconstructing Sensor
I0221 11:59:20.488044 21426 RenderTarget.h:51] Deconstructing RenderTarget
I0221 11:59:20.488250 21426 Sensor.h:80] Deconstructing Sensor
I0221 11:59:20.488260 21426 SceneGraph.h:20] Deconstructing SceneGraph
I0221 11:59:20.491708 21426 Renderer.cpp:33] Deconstructing Renderer
I0221 11:59:20.491716 21426 WindowlessContext.h:16] Deconstructing WindowlessContext
I0221 11:59:20.491719 21426 WindowlessContext.cpp:245] Deconstructing GL context
Renderer: GeForce RTX 2080 Ti/PCIe/SSE2 by NVIDIA Corporation
OpenGL version: 4.6.0 NVIDIA 440.33.01
Using optional features:
GL_ARB_ES2_compatibility
GL_ARB_direct_state_access
GL_ARB_get_texture_sub_image
GL_ARB_invalidate_subdata
GL_ARB_multi_bind
GL_ARB_robustness
GL_ARB_separate_shader_objects
GL_ARB_texture_filter_anisotropic
GL_ARB_texture_storage
GL_ARB_texture_storage_multisample
GL_ARB_vertex_array_object
GL_KHR_debug
Using driver workarounds:
no-layout-qualifiers-on-old-glsl
nv-zero-context-profile-mask
nv-implementation-color-read-format-dsa-broken
nv-cubemap-inconsistent-compressed-image-size
nv-cubemap-broken-full-compressed-image-query
nv-compressed-block-size-in-bits
I0221 11:59:20.526748 21426 ResourceManager.cpp:1054] Importing Basis files as BC7
I0221 11:59:25.743806 21426 Simulator.cpp:112] Loading house from data/scene_datasets/mp3d/Z6MFQCViBuw/Z6MFQCViBuw.house
I0221 11:59:25.743822 21426 Simulator.cpp:118] Loading semantic mesh data/scene_datasets/mp3d/Z6MFQCViBuw/Z6MFQCViBuw_semantic.ply
I0221 11:59:28.846593 21426 Simulator.cpp:130] Loaded.
I0221 11:59:28.908223 21426 simulator.py:142] Loaded navmesh data/scene_datasets/mp3d/Z6MFQCViBuw/Z6MFQCViBuw.navmesh
Traceback (most recent call last):
File "habitat_baselines/run.py", line 68, in <module>
main()
File "habitat_baselines/run.py", line 38, in main
run_exp(**vars(args))
File "habitat_baselines/run.py", line 62, in run_exp
trainer.train()
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 300, in train
episode_counts,
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 146, in _collect_rollout_step
outputs = self.envs.step([a[0].item() for a in actions])
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 339, in step
return self.wait_step()
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 326, in wait_step
observations.append(read_fn())
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 383, in _recv
raise EOFError
EOFError
Exception ignored in: <bound method VectorEnv.__del__ of <habitat.core.vector_env.VectorEnv object at 0x7efb2bd01668>>
Traceback (most recent call last):
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 468, in __del__
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 347, in close
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 250, in recv
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/multiprocessing/connection.py", line 375, in _recv
AttributeError: 'NoneType' object has no attribute 'BytesIO'
Traceback (most recent call last):
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/site-packages/torch-1.4.0-py3.6-linux-x86_64.egg/torch/distributed/launch.py", line 263, in <module>
main()
File "/local-scratch/anaconda3/envs/habitat2/lib/python3.6/site-packages/torch-1.4.0-py3.6-linux-x86_64.egg/torch/distributed/launch.py", line 259, in main
cmd=cmd)
subprocess.CalledProcessError: Command '['/local-scratch/anaconda3/envs/habitat2/bin/python', '-u', 'habitat_baselines/run.py', '--exp-config', 'habitat_baselines/config/objectnav/ddppo_objectnav.yaml', '--run-type', 'train']' returned non-zero exit status 1.
I am still not seeing anything about EGL in logs, which is concerning/confusing. What is your system memory amount? The ObjectNav dataset currently takes a lot of memory (we are fixing that in PR #309), so maybe you are getting killed by the OOM killer.
I used watch free -g
to monitor memory. Before I run the code, free memory is 41GB as shown here:
total used free shared buff/cache available
Mem: 62 7 41 0 13 54
Swap: 0 0 0
During the entire runtime of the code, free memory doesn't fall below 36GB
Does the normal habitat-sim example script work? i.e. does python examples/example.py --scene data/scene_datasets/mp3d/17DRP5sb8fy/17DRP5sb8fy.glb
while in /path/to/habitat-sim
work?
Yes, the normal habitat-sim example works. Final perfomance printed by running python examples/example.py --scene data/scene_datasets/mp3d/17DRP5sb8fy/17DRP5sb8fy.glb
is:
========================= Performance ========================
640 x 480, total time 1.61 s, frame time 1.610 ms (621.2 FPS)
==============================================================
Can you run things directly, maybe torch.distributed.launch is blocking the output of something important. i.e just python habitat_baselines/run.py --exp-config habitat_baselines/config/objectnav/ddppo_objectnav.yaml --run-type train
?
Running things without torch.distributed.launch
results the following log
2020-02-21 15:12:22,378 config: BASE_TASK_CONFIG_PATH: configs/tasks/objectnav_mp3d.yaml
CHECKPOINT_FOLDER: new_checkpoints
CHECKPOINT_INTERVAL: 50
CMD_TRAILING_OPTS: []
ENV_NAME: NavRLEnv
EVAL:
SPLIT: val
USE_CKPT_CONFIG: True
EVAL_CKPT_PATH_DIR: new_checkpoints
LOG_FILE: train.log
LOG_INTERVAL: 10
NUM_PROCESSES: 1
NUM_UPDATES: 10000
ORBSLAM2:
ANGLE_TH: 0.2617993877991494
BETA: 100
CAMERA_HEIGHT: 1.25
DEPTH_DENORM: 10.0
DIST_REACHED_TH: 0.15
DIST_TO_STOP: 0.05
D_OBSTACLE_MAX: 4.0
D_OBSTACLE_MIN: 0.1
H_OBSTACLE_MAX: 1.25
H_OBSTACLE_MIN: 0.375
MAP_CELL_SIZE: 0.1
MAP_SIZE: 40
MIN_PTS_IN_OBSTACLE: 320.0
NEXT_WAYPOINT_TH: 0.5
NUM_ACTIONS: 3
PLANNER_MAX_STEPS: 500
PREPROCESS_MAP: True
SLAM_SETTINGS_PATH: habitat_baselines/slambased/data/mp3d3_small1k.yaml
SLAM_VOCAB_PATH: habitat_baselines/slambased/data/ORBvoc.txt
RL:
DDPPO:
backbone: resnet50
distrib_backend: NCCL
num_recurrent_layers: 2
pretrained: False
pretrained_encoder: False
pretrained_weights: data/ddppo-models/gibson-2plus-resnet50.pth
reset_critic: True
rnn_type: LSTM
sync_frac: 0.6
train_encoder: True
PPO:
clip_param: 0.2
entropy_coef: 0.01
eps: 1e-05
gamma: 0.99
hidden_size: 512
lr: 2.5e-06
max_grad_norm: 0.2
num_mini_batch: 1
num_steps: 128
ppo_epoch: 2
reward_window_size: 50
tau: 0.95
use_gae: True
use_linear_clip_decay: False
use_linear_lr_decay: False
use_normalized_advantage: False
value_loss_coef: 0.5
REWARD_MEASURE: distance_to_goal
SLACK_REWARD: -0.01
SUCCESS_MEASURE: spl
SUCCESS_REWARD: 2.5
SENSORS: ['DEPTH_SENSOR', 'RGB_SENSOR']
SIMULATOR_GPU_ID: 0
TASK_CONFIG:
DATASET:
CONTENT_SCENES: []
DATA_PATH: data/datasets/objectnav/mp3d/v0/{split}/{split}.json.gz
SCENES_DIR: data/scene_datasets/
SPLIT: val
TYPE: ObjectNav-v1
ENVIRONMENT:
ITERATOR_OPTIONS:
CYCLE: True
GROUP_BY_SCENE: True
MAX_SCENE_REPEAT_EPISODES: -1
MAX_SCENE_REPEAT_STEPS: 10000
NUM_EPISODE_SAMPLE: -1
SHUFFLE: True
STEP_REPETITION_RANGE: 0.2
MAX_EPISODE_SECONDS: 10000000
MAX_EPISODE_STEPS: 500
PYROBOT:
BASE_CONTROLLER: proportional
BASE_PLANNER: none
BUMP_SENSOR:
TYPE: PyRobotBumpSensor
DEPTH_SENSOR:
CENTER_CROP: False
HEIGHT: 480
MAX_DEPTH: 5.0
MIN_DEPTH: 0.0
NORMALIZE_DEPTH: True
TYPE: PyRobotDepthSensor
WIDTH: 640
LOCOBOT:
ACTIONS: ['BASE_ACTIONS', 'CAMERA_ACTIONS']
BASE_ACTIONS: ['go_to_relative', 'go_to_absolute']
CAMERA_ACTIONS: ['set_pan', 'set_tilt', 'set_pan_tilt']
RGB_SENSOR:
CENTER_CROP: False
HEIGHT: 480
TYPE: PyRobotRGBSensor
WIDTH: 640
ROBOT: locobot
ROBOTS: ['locobot']
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR', 'BUMP_SENSOR']
SEED: 100
SIMULATOR:
ACTION_SPACE_CONFIG: v1
AGENTS: ['AGENT_0']
AGENT_0:
ANGULAR_ACCELERATION: 12.56
ANGULAR_FRICTION: 1.0
COEFFICIENT_OF_RESTITUTION: 0.0
HEIGHT: 0.88
IS_SET_START_STATE: False
LINEAR_ACCELERATION: 20.0
LINEAR_FRICTION: 0.5
MASS: 32.0
RADIUS: 0.2
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR']
START_POSITION: [0, 0, 0]
START_ROTATION: [0, 0, 0, 1]
DEFAULT_AGENT_ID: 0
DEPTH_SENSOR:
HEIGHT: 480
HFOV: 79
MAX_DEPTH: 5.0
MIN_DEPTH: 0.5
NORMALIZE_DEPTH: True
POSITION: [0, 0.88, 0]
TYPE: HabitatSimDepthSensor
WIDTH: 640
FORWARD_STEP_SIZE: 0.25
HABITAT_SIM_V0:
ALLOW_SLIDING: True
ENABLE_PHYSICS: False
GPU_DEVICE_ID: 0
GPU_GPU: False
PHYSICS_CONFIG_FILE: ./data/default.phys_scene_config.json
RGB_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimRGBSensor
WIDTH: 640
SCENE: data/scene_datasets/habitat-test-scenes/van-gogh-room.glb
SEED: 100
SEMANTIC_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimSemanticSensor
WIDTH: 640
TILT_ANGLE: 30
TURN_ANGLE: 30
TYPE: Sim-v0
TASK:
ACTIONS:
ANSWER:
TYPE: AnswerAction
LOOK_DOWN:
TYPE: LookDownAction
LOOK_UP:
TYPE: LookUpAction
MOVE_FORWARD:
TYPE: MoveForwardAction
STOP:
TYPE: StopAction
TELEPORT:
TYPE: TeleportAction
TURN_LEFT:
TYPE: TurnLeftAction
TURN_RIGHT:
TYPE: TurnRightAction
ANSWER_ACCURACY:
TYPE: AnswerAccuracy
COLLISIONS:
TYPE: Collisions
COMPASS_SENSOR:
TYPE: CompassSensor
CORRECT_ANSWER:
TYPE: CorrectAnswer
DISTANCE_TO_GOAL:
DISTANCE_TO: VIEW_POINTS
TYPE: DistanceToGoal
EPISODE_INFO:
TYPE: EpisodeInfo
GOAL_SENSOR_UUID: objectgoal
GPS_SENSOR:
DIMENSIONALITY: 2
TYPE: GPSSensor
HEADING_SENSOR:
TYPE: HeadingSensor
INSTRUCTION_SENSOR:
TYPE: InstructionSensor
INSTRUCTION_SENSOR_UUID: instruction
MEASUREMENTS: ['DISTANCE_TO_GOAL', 'SPL']
OBJECTGOAL_SENSOR:
GOAL_SPEC: TASK_CATEGORY_ID
GOAL_SPEC_MAX_VAL: 50
TYPE: ObjectGoalSensor
POINTGOAL_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalSensor
POINTGOAL_WITH_GPS_COMPASS_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalWithGPSCompassSensor
POSSIBLE_ACTIONS: ['STOP', 'MOVE_FORWARD', 'TURN_LEFT', 'TURN_RIGHT', 'LOOK_UP', 'LOOK_DOWN']
PROXIMITY_SENSOR:
MAX_DETECTION_RADIUS: 2.0
TYPE: ProximitySensor
QUESTION_SENSOR:
TYPE: QuestionSensor
SENSORS: ['OBJECTGOAL_SENSOR', 'COMPASS_SENSOR', 'GPS_SENSOR']
SPL:
DISTANCE_TO: VIEW_POINTS
SUCCESS_DISTANCE: 0.2
TYPE: SPL
SUCCESS_DISTANCE: 0.1
TOP_DOWN_MAP:
DRAW_BORDER: True
DRAW_GOAL_AABBS: True
DRAW_GOAL_POSITIONS: True
DRAW_SHORTEST_PATH: True
DRAW_SOURCE: True
DRAW_VIEW_POINTS: True
FOG_OF_WAR:
DRAW: True
FOV: 90
VISIBILITY_DIST: 5.0
MAP_PADDING: 3
MAP_RESOLUTION: 1250
MAX_EPISODE_STEPS: 1000
NUM_TOPDOWN_MAP_SAMPLE_POINTS: 20000
TYPE: TopDownMap
TYPE: ObjectNav-v1
TENSORBOARD_DIR: tb1
TEST_EPISODE_COUNT: 2184
TORCH_GPU_ID: 0
TRAINER_NAME: ppo
VIDEO_DIR: video_dir
VIDEO_OPTION: ['disk', 'tensorboard']
2020-02-21 15:12:22,378 Initializing dataset ObjectNav-v1
2020-02-21 15:12:47,742 Initializing dataset ObjectNav-v1
2020-02-21 15:13:10,882 initializing sim Sim-v0
Renderer: GeForce RTX 2080 Ti/PCIe/SSE2 by NVIDIA Corporation
OpenGL version: 4.6.0 NVIDIA 440.33.01
Using optional features:
GL_ARB_ES2_compatibility
GL_ARB_direct_state_access
GL_ARB_get_texture_sub_image
GL_ARB_invalidate_subdata
GL_ARB_multi_bind
GL_ARB_robustness
GL_ARB_separate_shader_objects
GL_ARB_texture_filter_anisotropic
GL_ARB_texture_storage
GL_ARB_texture_storage_multisample
GL_ARB_vertex_array_object
GL_KHR_debug
Using driver workarounds:
no-layout-qualifiers-on-old-glsl
nv-zero-context-profile-mask
nv-implementation-color-read-format-dsa-broken
nv-cubemap-inconsistent-compressed-image-size
nv-cubemap-broken-full-compressed-image-query
nv-compressed-block-size-in-bits
WARNING: Logging before InitGoogleLogging() is written to STDERR
I0221 15:13:11.062321 12732 ResourceManager.cpp:1054] Importing Basis files as BC7
I0221 15:13:12.485432 12732 Simulator.cpp:112] Loading house from data/scene_datasets/mp3d/pLe4wQe7qrG/pLe4wQe7qrG.house
I0221 15:13:12.485448 12732 Simulator.cpp:118] Loading semantic mesh data/scene_datasets/mp3d/pLe4wQe7qrG/pLe4wQe7qrG_semantic.ply
I0221 15:13:13.312784 12732 Simulator.cpp:130] Loaded.
I0221 15:13:13.327396 12732 simulator.py:142] Loaded navmesh data/scene_datasets/mp3d/pLe4wQe7qrG/pLe4wQe7qrG.navmesh
2020-02-21 15:13:13,329 Initializing task ObjectNav-v1
2020-02-21 15:13:16,349 agent number of parameters: 71371399
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint8 = np.dtype([("qint8", np.int8, 1)])
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:528: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint16 = np.dtype([("qint16", np.int16, 1)])
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:529: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:530: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint32 = np.dtype([("qint32", np.int32, 1)])
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:535: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
np_resource = np.dtype([("resource", np.ubyte, 1)])
I0221 15:13:39.968309 12732 Simulator.cpp:35] Deconstructing Simulator
I0221 15:13:39.968324 12732 SemanticScene.h:40] Deconstructing SemanticScene
I0221 15:13:39.968732 12732 SceneManager.h:24] Deconstructing SceneManager
I0221 15:13:39.968737 12732 SceneGraph.h:20] Deconstructing SceneGraph
I0221 15:13:39.968749 12732 RenderTarget.h:51] Deconstructing RenderTarget
I0221 15:13:39.969135 12732 Sensor.h:80] Deconstructing Sensor
I0221 15:13:39.969146 12732 RenderTarget.h:51] Deconstructing RenderTarget
I0221 15:13:39.969352 12732 Sensor.h:80] Deconstructing Sensor
I0221 15:13:39.969360 12732 SceneGraph.h:20] Deconstructing SceneGraph
I0221 15:13:39.972826 12732 Renderer.cpp:33] Deconstructing Renderer
I0221 15:13:39.972834 12732 WindowlessContext.h:16] Deconstructing WindowlessContext
I0221 15:13:39.972837 12732 WindowlessContext.cpp:245] Deconstructing GL context
Renderer: GeForce RTX 2080 Ti/PCIe/SSE2 by NVIDIA Corporation
OpenGL version: 4.6.0 NVIDIA 440.33.01
Using optional features:
GL_ARB_ES2_compatibility
GL_ARB_direct_state_access
GL_ARB_get_texture_sub_image
GL_ARB_invalidate_subdata
GL_ARB_multi_bind
GL_ARB_robustness
GL_ARB_separate_shader_objects
GL_ARB_texture_filter_anisotropic
GL_ARB_texture_storage
GL_ARB_texture_storage_multisample
GL_ARB_vertex_array_object
GL_KHR_debug
Using driver workarounds:
no-layout-qualifiers-on-old-glsl
nv-zero-context-profile-mask
nv-implementation-color-read-format-dsa-broken
nv-cubemap-inconsistent-compressed-image-size
nv-cubemap-broken-full-compressed-image-query
nv-compressed-block-size-in-bits
I0221 15:13:39.994935 12732 ResourceManager.cpp:1054] Importing Basis files as BC7
I0221 15:13:45.554143 12732 Simulator.cpp:112] Loading house from data/scene_datasets/mp3d/QUCTc6BB5sX/QUCTc6BB5sX.house
I0221 15:13:45.554159 12732 Simulator.cpp:118] Loading semantic mesh data/scene_datasets/mp3d/QUCTc6BB5sX/QUCTc6BB5sX_semantic.ply
I0221 15:13:57.232524 12732 Simulator.cpp:130] Loaded.
I0221 15:13:57.374905 12732 simulator.py:142] Loaded navmesh data/scene_datasets/mp3d/QUCTc6BB5sX/QUCTc6BB5sX.navmesh
Traceback (most recent call last):
File "habitat_baselines/run.py", line 68, in <module>
main()
File "habitat_baselines/run.py", line 38, in main
run_exp(**vars(args))
File "habitat_baselines/run.py", line 62, in run_exp
trainer.train()
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 300, in train
episode_counts,
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 146, in _collect_rollout_step
outputs = self.envs.step([a[0].item() for a in actions])
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 339, in step
return self.wait_step()
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 326, in wait_step
observations.append(read_fn())
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 250, in recv
buf = self._recv_bytes()
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 383, in _recv
raise EOFError
EOFError
Exception ignored in: <bound method VectorEnv.__del__ of <habitat.core.vector_env.VectorEnv object at 0x7f4aa0e0d7b8>>
Traceback (most recent call last):
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 468, in __del__
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 347, in close
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 250, in recv
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 407, in _recv_bytes
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/multiprocessing/connection.py", line 375, in _recv
AttributeError: 'NoneType' object has no attribute 'BytesIO'
This is odd. One last idea for debugging: Change habitat.VectorEnv
to habitat.ThreadedVectorEnv
here: https://github.com/facebookresearch/habitat-api/blob/master/habitat_baselines/common/env_utils.py#L94 from `
I think the code ran but it lead to another issue, possibly becuase reward is nan
2020-02-21 15:24:50,497 config: BASE_TASK_CONFIG_PATH: configs/tasks/objectnav_mp3d.yaml
CHECKPOINT_FOLDER: new_checkpoints
CHECKPOINT_INTERVAL: 50
CMD_TRAILING_OPTS: []
ENV_NAME: NavRLEnv
EVAL:
SPLIT: val
USE_CKPT_CONFIG: True
EVAL_CKPT_PATH_DIR: new_checkpoints
LOG_FILE: train.log
LOG_INTERVAL: 10
NUM_PROCESSES: 1
NUM_UPDATES: 10000
ORBSLAM2:
ANGLE_TH: 0.2617993877991494
BETA: 100
CAMERA_HEIGHT: 1.25
DEPTH_DENORM: 10.0
DIST_REACHED_TH: 0.15
DIST_TO_STOP: 0.05
D_OBSTACLE_MAX: 4.0
D_OBSTACLE_MIN: 0.1
H_OBSTACLE_MAX: 1.25
H_OBSTACLE_MIN: 0.375
MAP_CELL_SIZE: 0.1
MAP_SIZE: 40
MIN_PTS_IN_OBSTACLE: 320.0
NEXT_WAYPOINT_TH: 0.5
NUM_ACTIONS: 3
PLANNER_MAX_STEPS: 500
PREPROCESS_MAP: True
SLAM_SETTINGS_PATH: habitat_baselines/slambased/data/mp3d3_small1k.yaml
SLAM_VOCAB_PATH: habitat_baselines/slambased/data/ORBvoc.txt
RL:
DDPPO:
backbone: resnet50
distrib_backend: NCCL
num_recurrent_layers: 2
pretrained: False
pretrained_encoder: False
pretrained_weights: data/ddppo-models/gibson-2plus-resnet50.pth
reset_critic: True
rnn_type: LSTM
sync_frac: 0.6
train_encoder: True
PPO:
clip_param: 0.2
entropy_coef: 0.01
eps: 1e-05
gamma: 0.99
hidden_size: 512
lr: 2.5e-06
max_grad_norm: 0.2
num_mini_batch: 1
num_steps: 128
ppo_epoch: 2
reward_window_size: 50
tau: 0.95
use_gae: True
use_linear_clip_decay: False
use_linear_lr_decay: False
use_normalized_advantage: False
value_loss_coef: 0.5
REWARD_MEASURE: distance_to_goal
SLACK_REWARD: -0.01
SUCCESS_MEASURE: spl
SUCCESS_REWARD: 2.5
SENSORS: ['DEPTH_SENSOR', 'RGB_SENSOR']
SIMULATOR_GPU_ID: 0
TASK_CONFIG:
DATASET:
CONTENT_SCENES: []
DATA_PATH: data/datasets/objectnav/mp3d/v0/{split}/{split}.json.gz
SCENES_DIR: data/scene_datasets/
SPLIT: val
TYPE: ObjectNav-v1
ENVIRONMENT:
ITERATOR_OPTIONS:
CYCLE: True
GROUP_BY_SCENE: True
MAX_SCENE_REPEAT_EPISODES: -1
MAX_SCENE_REPEAT_STEPS: 10000
NUM_EPISODE_SAMPLE: -1
SHUFFLE: True
STEP_REPETITION_RANGE: 0.2
MAX_EPISODE_SECONDS: 10000000
MAX_EPISODE_STEPS: 500
PYROBOT:
BASE_CONTROLLER: proportional
BASE_PLANNER: none
BUMP_SENSOR:
TYPE: PyRobotBumpSensor
DEPTH_SENSOR:
CENTER_CROP: False
HEIGHT: 480
MAX_DEPTH: 5.0
MIN_DEPTH: 0.0
NORMALIZE_DEPTH: True
TYPE: PyRobotDepthSensor
WIDTH: 640
LOCOBOT:
ACTIONS: ['BASE_ACTIONS', 'CAMERA_ACTIONS']
BASE_ACTIONS: ['go_to_relative', 'go_to_absolute']
CAMERA_ACTIONS: ['set_pan', 'set_tilt', 'set_pan_tilt']
RGB_SENSOR:
CENTER_CROP: False
HEIGHT: 480
TYPE: PyRobotRGBSensor
WIDTH: 640
ROBOT: locobot
ROBOTS: ['locobot']
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR', 'BUMP_SENSOR']
SEED: 100
SIMULATOR:
ACTION_SPACE_CONFIG: v1
AGENTS: ['AGENT_0']
AGENT_0:
ANGULAR_ACCELERATION: 12.56
ANGULAR_FRICTION: 1.0
COEFFICIENT_OF_RESTITUTION: 0.0
HEIGHT: 0.88
IS_SET_START_STATE: False
LINEAR_ACCELERATION: 20.0
LINEAR_FRICTION: 0.5
MASS: 32.0
RADIUS: 0.2
SENSORS: ['RGB_SENSOR', 'DEPTH_SENSOR']
START_POSITION: [0, 0, 0]
START_ROTATION: [0, 0, 0, 1]
DEFAULT_AGENT_ID: 0
DEPTH_SENSOR:
HEIGHT: 480
HFOV: 79
MAX_DEPTH: 5.0
MIN_DEPTH: 0.5
NORMALIZE_DEPTH: True
POSITION: [0, 0.88, 0]
TYPE: HabitatSimDepthSensor
WIDTH: 640
FORWARD_STEP_SIZE: 0.25
HABITAT_SIM_V0:
ALLOW_SLIDING: True
ENABLE_PHYSICS: False
GPU_DEVICE_ID: 0
GPU_GPU: False
PHYSICS_CONFIG_FILE: ./data/default.phys_scene_config.json
RGB_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimRGBSensor
WIDTH: 640
SCENE: data/scene_datasets/habitat-test-scenes/van-gogh-room.glb
SEED: 100
SEMANTIC_SENSOR:
HEIGHT: 480
HFOV: 79
POSITION: [0, 0.88, 0]
TYPE: HabitatSimSemanticSensor
WIDTH: 640
TILT_ANGLE: 30
TURN_ANGLE: 30
TYPE: Sim-v0
TASK:
ACTIONS:
ANSWER:
TYPE: AnswerAction
LOOK_DOWN:
TYPE: LookDownAction
LOOK_UP:
TYPE: LookUpAction
MOVE_FORWARD:
TYPE: MoveForwardAction
STOP:
TYPE: StopAction
TELEPORT:
TYPE: TeleportAction
TURN_LEFT:
TYPE: TurnLeftAction
TURN_RIGHT:
TYPE: TurnRightAction
ANSWER_ACCURACY:
TYPE: AnswerAccuracy
COLLISIONS:
TYPE: Collisions
COMPASS_SENSOR:
TYPE: CompassSensor
CORRECT_ANSWER:
TYPE: CorrectAnswer
DISTANCE_TO_GOAL:
DISTANCE_TO: VIEW_POINTS
TYPE: DistanceToGoal
EPISODE_INFO:
TYPE: EpisodeInfo
GOAL_SENSOR_UUID: objectgoal
GPS_SENSOR:
DIMENSIONALITY: 2
TYPE: GPSSensor
HEADING_SENSOR:
TYPE: HeadingSensor
INSTRUCTION_SENSOR:
TYPE: InstructionSensor
INSTRUCTION_SENSOR_UUID: instruction
MEASUREMENTS: ['DISTANCE_TO_GOAL', 'SPL']
OBJECTGOAL_SENSOR:
GOAL_SPEC: TASK_CATEGORY_ID
GOAL_SPEC_MAX_VAL: 50
TYPE: ObjectGoalSensor
POINTGOAL_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalSensor
POINTGOAL_WITH_GPS_COMPASS_SENSOR:
DIMENSIONALITY: 2
GOAL_FORMAT: POLAR
TYPE: PointGoalWithGPSCompassSensor
POSSIBLE_ACTIONS: ['STOP', 'MOVE_FORWARD', 'TURN_LEFT', 'TURN_RIGHT', 'LOOK_UP', 'LOOK_DOWN']
PROXIMITY_SENSOR:
MAX_DETECTION_RADIUS: 2.0
TYPE: ProximitySensor
QUESTION_SENSOR:
TYPE: QuestionSensor
SENSORS: ['OBJECTGOAL_SENSOR', 'COMPASS_SENSOR', 'GPS_SENSOR']
SPL:
DISTANCE_TO: VIEW_POINTS
SUCCESS_DISTANCE: 0.2
TYPE: SPL
SUCCESS_DISTANCE: 0.1
TOP_DOWN_MAP:
DRAW_BORDER: True
DRAW_GOAL_AABBS: True
DRAW_GOAL_POSITIONS: True
DRAW_SHORTEST_PATH: True
DRAW_SOURCE: True
DRAW_VIEW_POINTS: True
FOG_OF_WAR:
DRAW: True
FOV: 90
VISIBILITY_DIST: 5.0
MAP_PADDING: 3
MAP_RESOLUTION: 1250
MAX_EPISODE_STEPS: 1000
NUM_TOPDOWN_MAP_SAMPLE_POINTS: 20000
TYPE: TopDownMap
TYPE: ObjectNav-v1
TENSORBOARD_DIR: tb1
TEST_EPISODE_COUNT: 2184
TORCH_GPU_ID: 0
TRAINER_NAME: ppo
VIDEO_DIR: video_dir
VIDEO_OPTION: ['disk', 'tensorboard']
2020-02-21 15:24:50,497 Initializing dataset ObjectNav-v1
2020-02-21 15:25:13,690 Initializing dataset ObjectNav-v1
2020-02-21 15:25:36,289 initializing sim Sim-v0
Renderer: GeForce RTX 2080 Ti/PCIe/SSE2 by NVIDIA Corporation
OpenGL version: 4.6.0 NVIDIA 440.33.01
Using optional features:
GL_ARB_ES2_compatibility
GL_ARB_direct_state_access
GL_ARB_get_texture_sub_image
GL_ARB_invalidate_subdata
GL_ARB_multi_bind
GL_ARB_robustness
GL_ARB_separate_shader_objects
GL_ARB_texture_filter_anisotropic
GL_ARB_texture_storage
GL_ARB_texture_storage_multisample
GL_ARB_vertex_array_object
GL_KHR_debug
Using driver workarounds:
no-layout-qualifiers-on-old-glsl
nv-zero-context-profile-mask
nv-implementation-color-read-format-dsa-broken
nv-cubemap-inconsistent-compressed-image-size
nv-cubemap-broken-full-compressed-image-query
nv-compressed-block-size-in-bits
WARNING: Logging before InitGoogleLogging() is written to STDERR
I0221 15:25:36.362851 15005 ResourceManager.cpp:1054] Importing Basis files as BC7
I0221 15:25:37.887517 15005 Simulator.cpp:112] Loading house from data/scene_datasets/mp3d/x8F5xyUWy9e/x8F5xyUWy9e.house
I0221 15:25:37.887533 15005 Simulator.cpp:118] Loading semantic mesh data/scene_datasets/mp3d/x8F5xyUWy9e/x8F5xyUWy9e_semantic.ply
I0221 15:25:40.463873 15005 Simulator.cpp:130] Loaded.
I0221 15:25:40.496153 14913 simulator.py:142] Loaded navmesh data/scene_datasets/mp3d/x8F5xyUWy9e/x8F5xyUWy9e.navmesh
2020-02-21 15:25:40,498 Initializing task ObjectNav-v1
2020-02-21 15:25:43,125 agent number of parameters: 71371399
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint8 = np.dtype([("qint8", np.int8, 1)])
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:528: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint16 = np.dtype([("qint16", np.int16, 1)])
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:529: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:530: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint32 = np.dtype([("qint32", np.int32, 1)])
/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/tensorflow-1.13.1-py3.6-linux-x86_64.egg/tensorflow/python/framework/dtypes.py:535: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
np_resource = np.dtype([("resource", np.ubyte, 1)])
I0221 15:26:00.255434 15005 Simulator.cpp:35] Deconstructing Simulator
I0221 15:26:00.255450 15005 SemanticScene.h:40] Deconstructing SemanticScene
I0221 15:26:00.256119 15005 SceneManager.h:24] Deconstructing SceneManager
I0221 15:26:00.256124 15005 SceneGraph.h:20] Deconstructing SceneGraph
I0221 15:26:00.256131 15005 RenderTarget.h:51] Deconstructing RenderTarget
I0221 15:26:00.256736 15005 Sensor.h:80] Deconstructing Sensor
I0221 15:26:00.256745 15005 RenderTarget.h:51] Deconstructing RenderTarget
I0221 15:26:00.256933 15005 Sensor.h:80] Deconstructing Sensor
I0221 15:26:00.256942 15005 SceneGraph.h:20] Deconstructing SceneGraph
I0221 15:26:00.260462 15005 Renderer.cpp:33] Deconstructing Renderer
I0221 15:26:00.260471 15005 WindowlessContext.h:16] Deconstructing WindowlessContext
I0221 15:26:00.260475 15005 WindowlessContext.cpp:245] Deconstructing GL context
Renderer: GeForce RTX 2080 Ti/PCIe/SSE2 by NVIDIA Corporation
OpenGL version: 4.6.0 NVIDIA 440.33.01
Using optional features:
GL_ARB_ES2_compatibility
GL_ARB_direct_state_access
GL_ARB_get_texture_sub_image
GL_ARB_invalidate_subdata
GL_ARB_multi_bind
GL_ARB_robustness
GL_ARB_separate_shader_objects
GL_ARB_texture_filter_anisotropic
GL_ARB_texture_storage
GL_ARB_texture_storage_multisample
GL_ARB_vertex_array_object
GL_KHR_debug
Using driver workarounds:
no-layout-qualifiers-on-old-glsl
nv-zero-context-profile-mask
nv-implementation-color-read-format-dsa-broken
nv-cubemap-inconsistent-compressed-image-size
nv-cubemap-broken-full-compressed-image-query
nv-compressed-block-size-in-bits
I0221 15:26:00.282538 15005 ResourceManager.cpp:1054] Importing Basis files as BC7
I0221 15:26:03.892053 15005 Simulator.cpp:112] Loading house from data/scene_datasets/mp3d/oLBMNvg9in8/oLBMNvg9in8.house
I0221 15:26:03.892071 15005 Simulator.cpp:118] Loading semantic mesh data/scene_datasets/mp3d/oLBMNvg9in8/oLBMNvg9in8_semantic.ply
I0221 15:26:12.726356 15005 Simulator.cpp:130] Loaded.
I0221 15:26:12.860735 14913 simulator.py:142] Loaded navmesh data/scene_datasets/mp3d/oLBMNvg9in8/oLBMNvg9in8.navmesh
2020-02-21 15:26:16,574 update: 10 fps: 42.296
2020-02-21 15:26:16,574 update: 10 env-time: 25.018s pth-time: 7.225s frames: 1408
2020-02-21 15:26:16,574 Average window size 11 reward: nan
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [0,0,0] Assertion `val >= zero` failed.
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [1,0,0] Assertion `val >= zero` failed.
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [2,0,0] Assertion `val >= zero` failed.
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [3,0,0] Assertion `val >= zero` failed.
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [4,0,0] Assertion `val >= zero` failed.
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [5,0,0] Assertion `val >= zero` failed.
Traceback (most recent call last):
File "habitat_baselines/run.py", line 68, in <module>
main()
File "habitat_baselines/run.py", line 38, in main
run_exp(**vars(args))
File "habitat_baselines/run.py", line 62, in run_exp
trainer.train()
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 300, in train
episode_counts,
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 146, in _collect_rollout_step
outputs = self.envs.step([a[0].item() for a in actions])
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 146, in <listcomp>
outputs = self.envs.step([a[0].item() for a in actions])
RuntimeError: CUDA error: device-side assert triggered
Exception ignored in: <bound method VectorEnv.__del__ of <habitat.core.vector_env.ThreadedVectorEnv object at 0x7fad4edfb940>>
Traceback (most recent call last):
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 468, in __del__
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 350, in close
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/queue.py", line 145, in put
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/threading.py", line 347, in notify
TypeError: 'NoneType' object is not callable
Running it with CUDA_LAUNCH_BLOCKING=1
resulted in an elaborate error. I am copying only the last part of the log.
2020-02-21 15:44:22,225 update: 10 env-time: 23.628s pth-time: 8.889s frames: 1408
2020-02-21 15:44:22,225 Average window size 11 reward: nan
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [0,0,0] Assertion `val >= zero` failed.
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [1,0,0] Assertion `val >= zero` failed.
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [2,0,0] Assertion `val >= zero` failed.
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [3,0,0] Assertion `val >= zero` failed.
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [4,0,0] Assertion `val >= zero` failed.
/pytorch/aten/src/ATen/native/cuda/MultinomialKernel.cu:243: void at::native::<unnamed>::sampleMultinomialOnce(long *, long, int, scalar_t *, scalar_t *, int, int) [with scalar_t = float, accscalar_t = float]: block: [0,0,0], thread: [5,0,0] Assertion `val >= zero` failed.
THCudaCheck FAIL file=/pytorch/aten/src/THC/generic/THCTensorScatterGather.cu line=67 error=710 : device-side assert triggered
Traceback (most recent call last):
File "habitat_baselines/run.py", line 68, in <module>
main()
File "habitat_baselines/run.py", line 38, in main
run_exp(**vars(args))
File "habitat_baselines/run.py", line 62, in run_exp
trainer.train()
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 300, in train
episode_counts,
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/ppo_trainer.py", line 139, in _collect_rollout_step
rollouts.masks[rollouts.step],
File "/local-scratch/habitat-api1/habitat_baselines/rl/ppo/policy.py", line 50, in act
action_log_probs = distribution.log_probs(action)
File "/local-scratch/habitat-api1/habitat_baselines/common/utils.py", line 32, in log_probs
.log_prob(actions.squeeze(-1))
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/site-packages/torch-1.4.0-py3.6-linux-x86_64.egg/torch/distributions/categorical.py", line 116, in log_prob
return log_pmf.gather(-1, value).squeeze(-1)
RuntimeError: cuda runtime error (710) : device-side assert triggered at /pytorch/aten/src/THC/generic/THCTensorScatterGather.cu:67
Exception ignored in: <bound method VectorEnv.__del__ of <habitat.core.vector_env.ThreadedVectorEnv object at 0x7fd5ef808940>>
Traceback (most recent call last):
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 468, in __del__
File "/local-scratch/habitat-api1/habitat/core/vector_env.py", line 350, in close
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/queue.py", line 145, in put
File "/local-scratch/anaconda3/envs/habitat/lib/python3.6/threading.py", line 347, in notify
TypeError: 'NoneType' object is not callable
@mathfac have you seen nan rewards with the objectnav dataset?
I am not sure why reward is showing up as nan
, but you are currently using just 1 process, which will make RL highly unstable and wold explain this error.
You are completely right. I changed LOG_INTERVAL
in habitat_baselines/config/objectnav/ddppo_objectnav.yaml
to 1 and it runs around 7-8 updates. After that reward turns nan
.
Thanks for all the help!
There was no NaN rewards before, but that will definitely break training. Debugging on my side.
On Mon, Mar 2, 2020 at 10:01 AM Shivansh Patel notifications@github.com wrote:
Closed #308 https://github.com/facebookresearch/habitat-api/issues/308.
— You are receiving this because you were mentioned.
Reply to this email directly, view it on GitHub https://github.com/facebookresearch/habitat-api/issues/308?email_source=notifications&email_token=AAGWHAFMFOWJHACDG4IU46TRFPX6BA5CNFSM4KYXSF62YY3PNVWWK3TUL52HS4DFWZEXG43VMVCXMZLOORHG65DJMZUWGYLUNFXW5KTDN5WW2ZLOORPWSZGOXAPO3NA#event-3089034676, or unsubscribe https://github.com/notifications/unsubscribe-auth/AAGWHADA47TKJIKETY6JCJ3RFPX6BANCNFSM4KYXSF6Q .
Hi, I find NaN rewards bug may occur when targets are in different large flat(ish) surfaces, which is reported in https://github.com/facebookresearch/habitat-sim/issues/405. I find one example for objectnav:
scene_id: data/scene_datasets/mp3d/oLBMNvg9in8/oLBMNvg9in8.glb
episode_id: 1336
You can check it.
I'm getting DistanceToGoal metric as NaN in the PointNav training on MP3D. The episode ID might be different than the standard datasets since I made some changes. So, I've given the scene id, agent position and goal position.
Episode id: 67230
Scene id: data/scene_datasets/mp3d/dhjEzFoUFzH/dhjEzFoUFzH.glb
Agent position: [ -1.4486076 -0.35115004 -34.537006 ]
Goal position: [0.5637829899787903, -0.15369552373886108, -42.55187225341797]
I haven't had the time to investigate why this is happening. Temporarily, I'm replacing geodesic distance with euclidean distance if this happens so that I can continue to train my agents.
We fixed a bug in the navmeshes a while back that made a few episodes for MP3D pointnav invalid (they shouldn't have ever been valid and I have no idea how they ever were), this is the script I made for finding/removing them: https://gist.github.com/erikwijmans/e4410f0e12facb87890e919aa264e3fe -- They are just train episodes fortunately
@mathfac did the cleaned up versions ever get re-uploaded?
Got it. Thanks!
@erikwijmans, thank you for bringing it up. The PointNav v1 MP3D dataset was updated with remove of that faulty episodes: https://dl.fbaipublicfiles.com/habitat/data/datasets/pointnav/mp3d/v1/pointnav_mp3d_v1.zip. cc @srama2512
Did the NaN rewards for ObjectNav ever get fixed? I am training DD-PPO agents for ObjectNav and it keeps detecting NaN in the DistanceToGoal metric. For a lot of episodes. Here is a small sample of the episodes where this happens:
Episode id: data/scene_datasets/mp3d/b8cTxDM8gDG/b8cTxDM8gDG.glb 16950
Episode id: data/scene_datasets/mp3d/b8cTxDM8gDG/b8cTxDM8gDG.glb 15529
Episode id: data/scene_datasets/mp3d/PX4nDJXEHrG/PX4nDJXEHrG.glb 19029
Episode id: data/scene_datasets/mp3d/sT4fr6TAbpF/sT4fr6TAbpF.glb 9722
Episode id: data/scene_datasets/mp3d/Uxmj2M2itWa/Uxmj2M2itWa.glb 111
Episode id: data/scene_datasets/mp3d/Uxmj2M2itWa/Uxmj2M2itWa.glb 2174
Episode id: data/scene_datasets/mp3d/Uxmj2M2itWa/Uxmj2M2itWa.glb 813
Episode id: data/scene_datasets/mp3d/Uxmj2M2itWa/Uxmj2M2itWa.glb 2360
Episode id: data/scene_datasets/mp3d/sT4fr6TAbpF/sT4fr6TAbpF.glb 3237
Episode id: data/scene_datasets/mp3d/sT4fr6TAbpF/sT4fr6TAbpF.glb 2914
Episode id: data/scene_datasets/mp3d/sT4fr6TAbpF/sT4fr6TAbpF.glb 11041
I have never be able to reproduce nan/inf distances for ObjectNav. Did you modify the agent size/height or are you doing something like a teleport agent?
I am running a checker on those scenes to see if anything isn't navigable.
Oh, right. I'm using the original agent configuration and not the modified one used for the challenge. Could that be the problem?
Yes, that can be a problem.
On Thu, Aug 27, 2020 at 10:40 AM Santhosh Kumar Ramakrishnan < notifications@github.com> wrote:
Oh, right. I'm using the original agent configuration and not the modified one used for the challenge. Could that be the problem?
— You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub https://github.com/facebookresearch/habitat-lab/issues/308#issuecomment-682093344, or unsubscribe https://github.com/notifications/unsubscribe-auth/AAGWHACA5XRXIXPSKJZFVJ3SC2LBPANCNFSM4KYXSF6Q .
The dataset and spawn points and view points are created for specific agent specification.
On Thu, Aug 27, 2020 at 10:51 AM Oleksandr Maksymets maksymets@gmail.com wrote:
Yes, that can be a problem.
On Thu, Aug 27, 2020 at 10:40 AM Santhosh Kumar Ramakrishnan < notifications@github.com> wrote:
Oh, right. I'm using the original agent configuration and not the modified one used for the challenge. Could that be the problem?
— You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub https://github.com/facebookresearch/habitat-lab/issues/308#issuecomment-682093344, or unsubscribe https://github.com/notifications/unsubscribe-auth/AAGWHACA5XRXIXPSKJZFVJ3SC2LBPANCNFSM4KYXSF6Q .
Got it. Are there pre-trained DD-PPO agents available for PointNav with the new agent configuration? The mismatch in the observation space and action space (10 -> 30 deg rotations) might be a problem moving forward.
❓ Help
I am trying to run objectnav using the script
habitat_baseline/rl/ddppo/single_node.sh
on 2 GPU machine. I have edited--exp-config
flag tohabitat_baselines/config/objectnav/ddppo_objectnav.yaml
. I am getting the following error logThanks in advance