Open FHT-hub opened 2 months ago
Thanks for your answer, I see that the code you provided doesn't mention the speech-to-speech translation part, but I assume the method should work for speech-to-speech translation tasks as well?
------------------ 原始邮件 ------------------ 发件人: "facebookresearch/seamless_communication" @.>; 发送时间: 2024年8月22日(星期四) 凌晨2:04 @.>; @.**@.>; 主题: Re: [facebookresearch/seamless_communication] Is it possible to fine-tune the model using a fine-tuning method such as LORA? (Issue #496)
This can be done with huggingface api. here is a simple training script. I added deepspeed so i can offload optimizer to cpu and increase training batch size.
from transformers import (SeamlessM4TProcessor, SeamlessM4TForSpeechToText, SeamlessM4TForTextToText, SeamlessM4TTokenizer, SeamlessM4Tv2ForSpeechToText, SeamlessM4Tv2ForTextToText) from seamless_communication.cli.m4t.finetune import dist_utils from seamless_communication.cli.m4t.finetune import trainer from torch import nn import torch, audiofile, argparse, os import pandas as pd import audiofile import os from sacrebleu.metrics import BLEU, CHRF, TER from dataclasses import dataclass from accelerate import Accelerator from enum import Enum import logging, json import torch.distributed as dist from pathlib import Path from torch.utils.data import Dataset from transformers import Trainer, TrainingArguments from typing import List, Optional, Tuple, Union from tqdm import tqdm from collections import namedtuple import wandb WANDB_PRJ_NAME = "master_thesis" os.environ["WANDB_PROJECT"] = WANDB_PRJ_NAME # name your W&B project os.environ["WANDB_MODE"] = "offline" accelerator = Accelerator(log_with="wandb") class PandasDataset(Dataset): def init(self, dataframe): self.dataframe = dataframe def len(self): return self.dataframe.shape[0] def getitem(self, idx): return self.dataframe.iloc[idx,:] def get_config() -> argparse.ArgumentParser: parser = argparse.ArgumentParser(description="Example finetuning script for M4T models") parser.add_argument( "--config", type=Path, required=True, help=("config path"),) with open(parser.parse_args().config, 'r') as config_file: return json.load(config_file) def load_hf_model(model_name, mode): if model_name == 'seamlessM4T_v2_large': if mode.lower() == 's2tt': seamless_cls = SeamlessM4Tv2ForSpeechToText else: seamless_cls = SeamlessM4Tv2ForTextToText else: if mode.lower() == 's2tt': seamless_cls = SeamlessM4TForSpeechToText else: seamless_cls = SeamlessM4TForTextToText if model_name == 'seamlessM4T_medium': processor = SeamlessM4TProcessor.from_pretrained("facebook/hf-seamless-m4t-medium") tokenizer = SeamlessM4TTokenizer.from_pretrained("facebook/hf-seamless-m4t-medium") model = seamless_cls.from_pretrained("facebook/hf-seamless-m4t-medium") elif model_name == 'seamlessM4T_large': processor = SeamlessM4TProcessor.from_pretrained("facebook/hf-seamless-m4t-large") tokenizer = SeamlessM4TTokenizer.from_pretrained("facebook/hf-seamless-m4t-large") model = seamless_cls.from_pretrained("facebook/hf-seamless-m4t-large") elif model_name == 'seamlessM4T_v2_large': processor = SeamlessM4TProcessor.from_pretrained("facebook/seamless-m4t-v2-large") tokenizer = SeamlessM4TTokenizer.from_pretrained("facebook/seamless-m4t-v2-large") model = seamless_cls.from_pretrained("facebook/seamless-m4t-v2-large") else: raise Exception(f'Invalid model name({model_name}).') return model, tokenizer, processor def main(): config = get_config() torch.manual_seed(config["seed"]) model, tokenizer, processor = load_hf_model(config["model_name"], config["mode"]) model.train() train_dataset = PandasDataset(pd.read_csv(config["train_dataset"])) eval_dataset = PandasDataset(pd.read_csv(config["eval_dataset"]).iloc[:100,:]) # test_dataset = PandasDataset(pd.read_csv(config["test_dataset)) # log_stuff(accelerator, config) training_args = TrainingArguments( output_dir=config["save_model_dir"], eval_strategy='steps', eval_steps=config["eval_steps"], per_device_train_batch_size=config["train_batch_size"], per_device_eval_batch_size=config["eval_batch_size"], data_seed=config["seed"], eval_on_start=True, adam_epsilon=1e-08, adam_beta1=0.9, adam_beta2=0.98, learning_rate=config["learning_rate"], warmup_steps=config["warmup_steps"], max_steps=config["max_steps"], num_train_epochs=config["max_epochs"], bf16=config["bf16"], fp16=config["fp16"], report_to='none') data_collator = SeamlessDataCollator(tokenizer, processor, config, accelerator) trainer = accelerator.prepare(Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=data_collator)) trainer.train() @accelerator.on_main_process def log_stuff(accelerator, config): accelerator.init_trackers(project_name=WANDB_PRJ_NAME, config=config) with open(config["dataset_info"], 'r') as config_file: metadata=json.load(config_file) wandb_tracker = accelerator.get_tracker("wandb", unwrap=True) wandb_tracker.log_artifact(wandb.Artifact( "ds2t_only", type="dataset", description="Speech to text translation dataset", metadata=metadata)) class SeamlessDataCollator(): def init(self, tokenizer, processor, config, accelerator): self.tokenizer = tokenizer self.processor = processor self.src_lang = config["src_lang"] self.tgt_lang = config["tgt_lang"] self.sample_rate = config["sample_rate"] if config["mode"].lower() == 's2tt': self.collator_fn = self._prepare_batch_s2t else: self.collator_fn = self._prepare_batch_t2t self.accelerator = accelerator def call(self, batch): batch_dict = {} for elm in batch: for k,v in elm.items(): if k in batch_dict: batch_dict[k].append(v) else: batch_dict[k] = [v] return self.collator_fn(batch_dict) def _prepare_batch_s2t(self, batch): audio_array_list = [] for audio_path in batch['src_audio_path']: audio_array, sr = audiofile.read(audio_path) assert sr == self.sample_rate audio_array_list.append(audio_array) audio_inputs = self.processor(audios=audio_array_list, sampling_rate=self.sample_rate, return_tensors="pt") #src_text which is unused. srctext = ['hello world' for in batch['tgt_text']] text_inputs = self.tokenizer(text=src_text, text_target=batch['tgt_text'], src_lang=self.src_lang, tgt_lang=self.tgt_lang, return_tensors="pt") return {'input_features' : audio_inputs.input_features, 'attention_mask' : audio_inputs.attention_mask, 'labels' : text_inputs.labels, 'tgt_lang' : self.tgt_lang} def _prepare_batch_t2t(self, batch): text_inputs = self.tokenizer(text=batch['src_text'], text_target=batch['tgt_text'], src_lang=self.src_lang, tgt_lang=self.tgt_lang, return_tensors="pt") return {'input_ids' : text_inputs.input_ids, 'attention_mask' : text_inputs.attention_mask, 'labels' : text_inputs.labels, 'tgt_lang' : self.tgt_lang} main()
training_config.json
{ "train_dataset": "/path/to/train.csv", "eval_dataset":"/path/to/dev.csv", "test_dataset":"/path/to/test.csv", "dataset_info":"/path/to/dataset_info.json", "model_name":"seamlessM4T_v2_large", "bf16": true, "fp16": false, "save_model_dir":"/path/to/save_dir/", "seed":42, "train_batch_size":8, "eval_batch_size":8, "test_batch_size":32, "patience":10000, "max_epochs":1, "learning_rate":1e-6, "max_steps": 10000000, "warmup_steps": 100, "eval_steps": 1000, "log_steps":1000, "max_src_tokens": 100000000, "mode" : "s2t", "freeze_layers": [], "device": "cuda", "sample_rate": 16000, "src_lang": "eng", "tgt_lang": "pes" }
deepspeed_config.json
{ "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 0, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": 0, "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 0, "stage3_max_reuse_distance": 0, "stage3_gather_16bit_weights_on_model_save": true }, "bf16": { "enabled": "auto" }, "fp16": { "enabled": "auto", "auto_cast": false, "loss_scale": 0, "initial_scale_power": 32, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "gradient_accumulation_steps": "auto", "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }
accelerate_config.yaml
compute_environment: LOCAL_MACHINE debug: false deepspeed_config: deepspeed_config_file: deepspeed_config.json distributed_type: DEEPSPEED downcast_bf16: 'no' enable_cpu_affinity: false machine_rank: 0 main_training_function: main num_machines: 1 num_processes: 2 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false
Then you can simply add lora to the model with following lines :
from peft import LoraConfig, get_peft_model lora_config = LoraConfig(...) peft_model = get_peft_model(model, lora_config)
finally you can run the script with this :
CUDA_VISIBLE_DEVICES=0,1 accelerate launch --config_file /path/to/accelerate_config.yaml \ /path/to/hf_seamless_trainer.py --config /path/to/training_config.json
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you authored the thread.Message ID: @.***>
here is a trainer file (replace it with src/seamless_communication/cli/m4t/finetune/trainer.py) with added lora. pass a lora_config dictionary to UnitYFinetune.
lora_config = {''r"=32,alpha=64,dropout=0.2,keys=[".*_proj"]}
# Copyright (c) Meta Platforms, Inc. and affiliates
# All rights reserved.
#
# This source code is licensed under the license found in the
# MIT_LICENSE file in the root directory of this source tree.
import logging
import time
from contextlib import contextmanager
from dataclasses import dataclass
from enum import Enum
from tqdm import tqdm
from pathlib import Path
from typing import List, Optional, Tuple, Union
import copy
import torch
import torch.distributed as dist
import torch.nn as nn
from fairseq2.data import VocabularyInfo
from fairseq2.models.sequence import SequenceModelOutput
from fairseq2.nn.padding import PaddingMask
from fairseq2.optim.lr_scheduler import MyleLR
from fairseq2.typing import Device
from torch.optim import AdamW
import os, shutil
from seamless_communication.cli.m4t.finetune import dataloader, dist_utils
from seamless_communication.models.unity import (
UnitYModel,
UnitYT2UModel,
)
import fairseq2.nn.lora as lora
logger = logging.getLogger(__name__)
class FinetuneMode(Enum):
SPEECH_TO_SPEECH = "SPEECH_TO_SPEECH"
SPEECH_TO_TEXT = "SPEECH_TO_TEXT"
TEXT_TO_SPEECH = "TEXT_TO_SPEECH"
@dataclass
class FinetuneParams:
model_name: str
"""Model name of model being finetuned."""
save_model_path: Path
"""Path were to save finetuned model."""
finetune_mode: FinetuneMode = FinetuneMode.TEXT_TO_SPEECH
"""Allows to freeze S2T or T2U part of the model"""
float_dtype: torch.dtype = torch.float16
"""Float Dtype"""
max_epochs: int = 10
""" Maximum number of trainign epochs"""
label_smoothing: float = 0.2
""" Label smoothing coefficient for nll_loss """
warmup_steps: int = 100
""" Number of steps with linearly increasing LR"""
log_steps: int = 10
""" Log inner loss after each `log_steps` training steps"""
eval_steps: int = 50
""" Get eval loss after each `eval_steps` training steps """
patience: int = 3
""" Terminate if eval loss did not improve
over the last `patience * eval_steps` training steps"""
learning_rate: float = 1e-5
""" Optimizer learining rate """
train_batch_size: int = 5
"""The batch size during train steps"""
eval_batch_size: int = 5
"""The batch size during evaluation."""
device: Device = torch.device("cuda")
""" Where to run computation"""
class UnitYFinetuneWrapper(nn.Module):
"""Convenience wrapper that does a forward pass
and returns S2T and T2U logits"""
def __init__(self, model: UnitYModel, mode: FinetuneMode, device: Device):
super().__init__()
self.model: UnitYModel = model
self.freeze_s2t: bool = mode == FinetuneMode.TEXT_TO_SPEECH
self.freeze_t2u: bool = mode == FinetuneMode.SPEECH_TO_TEXT
logger.info(f"Freeze s2t: {self.freeze_s2t}, freeze t2u: {self.freeze_t2u}")
self.device = device
def forward(
self, batch: dataloader.MultimodalSeqsBatch
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
dummy_context = contextmanager(lambda: iter([None]))()
with torch.no_grad() if self.freeze_s2t else dummy_context: # type:ignore
assert batch.speech_to_text.src_tokens is not None
seqs = batch.speech_to_text.src_tokens.to(self.device)
assert batch.speech_to_text.src_lengths is not None
seq_lens = batch.speech_to_text.src_lengths.to(self.device)
speech_encoder_out, speech_encoder_padding_mask = self.model.encode_speech(
seqs=seqs, padding_mask=PaddingMask(seq_lens, seqs.size(1))
)
assert batch.speech_to_text.prev_output_tokens is not None
seqs = batch.speech_to_text.prev_output_tokens.to(self.device)
assert batch.speech_to_text.target_lengths is not None
seq_lens = batch.speech_to_text.target_lengths.to(self.device)
text_decoder_out, text_decoder_padding_mask = self.model.decode(
seqs=seqs,
padding_mask=PaddingMask(seq_lens, seqs.size(1)),
encoder_output=speech_encoder_out,
encoder_padding_mask=speech_encoder_padding_mask,
)
assert self.model.final_proj is not None
text_logits = self.model.final_proj(text_decoder_out)
if self.freeze_t2u:
return (text_logits, None)
assert self.model.t2u_model is not None
assert batch.text_to_units.prev_output_tokens is not None
dummy_context = contextmanager(lambda: iter([None]))()
with torch.no_grad() if self.freeze_t2u else dummy_context: # type:ignore
if not isinstance(self.model.t2u_model, UnitYT2UModel):
raise NotImplementedError(
"T2U finetuning implemented only for UnitYT2UModel"
)
(
unit_encoder_out,
unit_encoder_padding_mask,
) = self.model.t2u_model.encode(
seqs=text_decoder_out,
padding_mask=text_decoder_padding_mask,
)
seqs = batch.text_to_units.prev_output_tokens.to(self.device)
assert batch.text_to_units.target_lengths is not None
seq_lens = batch.text_to_units.target_lengths.to(self.device)
unit_decoder_out, _ = self.model.t2u_model.decode(
seqs=seqs,
padding_mask=PaddingMask(seq_lens, seqs.size(1)),
encoder_output=unit_encoder_out,
encoder_padding_mask=unit_encoder_padding_mask,
)
unit_logits = self.model.t2u_model.final_proj(unit_decoder_out)
return (text_logits, unit_logits)
class CalcLoss:
"""Calculates negative log likelihood loss for S2T and T2U"""
def __init__(
self,
label_smoothing: float,
s2t_vocab_info: VocabularyInfo,
t2u_vocab_info: Optional[VocabularyInfo],
):
self.label_smoothing = label_smoothing
self.s2t_vocab_info = s2t_vocab_info
self.t2u_vocab_info = t2u_vocab_info
def __call__(
self,
batch: dataloader.MultimodalSeqsBatch,
text_logits: torch.Tensor,
unit_logits: Optional[torch.Tensor],
) -> torch.Tensor:
assert batch.speech_to_text.target_lengths is not None
prefix_skip_len = 1 # language tokens to skip
s2t_numel = torch.sum(batch.speech_to_text.target_lengths - prefix_skip_len).to(
text_logits.device
)
assert batch.speech_to_text.target_tokens is not None
s2t_loss = SequenceModelOutput(
logits=text_logits, vocab_info=self.s2t_vocab_info
).compute_loss(
targets=batch.speech_to_text.target_tokens.to(text_logits.device),
ignore_prefix_size=prefix_skip_len,
label_smoothing=self.label_smoothing,
)
if unit_logits is None:
return s2t_loss / s2t_numel
assert batch.text_to_units.target_lengths is not None
s2u_numel = torch.sum(batch.text_to_units.target_lengths - prefix_skip_len).to(
unit_logits.device
)
assert batch.text_to_units.target_tokens is not None
assert self.t2u_vocab_info is not None
s2u_loss = SequenceModelOutput(
logits=unit_logits, vocab_info=self.t2u_vocab_info
).compute_loss(
targets=batch.text_to_units.target_tokens.to(unit_logits.device),
ignore_prefix_size=prefix_skip_len,
label_smoothing=self.label_smoothing,
)
return s2t_loss / s2t_numel + s2u_loss / s2u_numel
class LossCollector:
"""Aggregrates loss history across nodes"""
def __init__(self, device: Optional[Device] = None, reduce_op: str = "avg"):
self.n_samples: float = 0
self.val_sum: float = 0.0
self.reduce_op = reduce_op
self.device = device
self.is_distributed = dist_utils.is_dist_initialized()
def reset(self) -> None:
self.n_samples = 0
self.val_sum = 0.0
def update(self, n_samples: int, batch_loss: float) -> None:
self.n_samples += n_samples
self.val_sum += batch_loss
def reduce(self) -> float:
n_samples, val_sum = self._collect()
if self.reduce_op == "avg":
return val_sum / (n_samples + 1)
if self.reduce_op == "sum":
return val_sum
raise ValueError()
def _collect(self) -> Tuple[float, float]:
if not self.is_distributed:
return self.n_samples, self.val_sum
local_val = torch.tensor([[self.n_samples, self.val_sum]], device=self.device)
all_vals = [
torch.zeros((1, 2), device=self.device)
for _ in range(dist_utils.get_world_size())
]
dist.all_gather(all_vals, local_val)
losses = torch.concat(all_vals, dim=0)
reduced = torch.sum(losses, dim=0).reshape(2).cpu()
return reduced[0].item(), reduced[1].item()
class UnitYFinetune:
def __init__(
self,
model: UnitYModel,
params: FinetuneParams,
train_data_loader: dataloader.UnitYDataLoader,
eval_data_loader: Optional[dataloader.UnitYDataLoader] = None,
freeze_modules: Optional[List[Union[str, torch.nn.Module]]] = None,
lora_config = None,
):
self.params = params
self.calc_loss = CalcLoss(
label_smoothing=self.params.label_smoothing,
s2t_vocab_info=model.target_vocab_info,
t2u_vocab_info=model.t2u_model.target_vocab_info
if model.t2u_model is not None
else None,
)
self.model = model
if freeze_modules:
self._freeze_modules(freeze_modules)
if lora_config:
self.lora_config = lora.LoRAConfig(**lora_config)
self.model = lora.wrap_lora(model, self.lora_config)
else:
self.lora_config = None
self.model = self._wrap_model_for_trainining(model=self.model)
self.train_data_loader = train_data_loader
self.eval_data_loader = eval_data_loader
self.grad_scaler = torch.cuda.amp.GradScaler() # type: ignore
self.optimizer = AdamW(
params=self.model.parameters(),
lr=self.params.learning_rate,
betas=(0.9, 0.98),
eps=1e-08,
maximize=False,
weight_decay=0.0,
fused=(self.params.device.type == "cuda"),
)
self.lr_scheduler = MyleLR(
optimizer=self.optimizer,
num_warmup_steps=self.params.warmup_steps,
start_lr=1e-9,)
self.train_loss_hist = LossCollector(device=params.device)
self.epoch_idx: int = 0
self.update_idx: int = 0
self.patience_left: int = self.params.patience
self.best_eval_loss: Optional[float] = None
self.is_best_state: bool = False
torch.set_float32_matmul_precision("high")
def _reset_stats(self) -> None:
self.train_loss_hist.reset()
self.epoch_idx = 0
self.update_idx = 0
self.patience_left = self.params.patience
self.best_eval_loss = None
self.is_best_state = False
self.save_count = 0
def _wrap_model_for_trainining(self, model: UnitYModel) -> nn.Module:
wrapped_model = UnitYFinetuneWrapper(
model=model, mode=self.params.finetune_mode, device=self.params.device
)
if not dist_utils.is_dist_initialized():
return wrapped_model
find_unused = self.params.finetune_mode == FinetuneMode.TEXT_TO_SPEECH
return nn.parallel.DistributedDataParallel(
wrapped_model,
device_ids=[dist_utils.get_local_rank()],
find_unused_parameters=find_unused,
)
def _freeze_modules(self, frozen_modules: List[str] = []) -> None:
for icecube in frozen_modules:
for (name, module) in self.model.named_modules():
if name.startswith(icecube):
logger.info(f"Freezing Module: {name}")
for param in module.parameters():
param.requires_grad = False
def _update_eval_stats(self, eval_loss: float) -> None:
self.is_best_state = (
self.best_eval_loss is None or eval_loss < self.best_eval_loss
)
self.best_eval_loss = eval_loss if self.is_best_state else self.best_eval_loss
self.patience_left = (
self.params.patience if self.is_best_state else self.patience_left - 1
)
logger.info(
f"Eval after {self.update_idx} updates: "
f"loss={eval_loss:.4f} "
f"best_loss={self.best_eval_loss:.4f} "
f"patience_steps_left={self.patience_left}"
)
@torch.no_grad()
def _eval_model(self) -> None:
"""Calc avg loss on eval dataset and update evaluation stats"""
if self.eval_data_loader is None:
return
logger.info(f"Evaluation Step {self.update_idx // self.params.eval_steps}...")
loss_hist = LossCollector(device=self.params.device)
self.model.eval()
for batch in self.eval_data_loader.get_dataloader():
assert batch.speech_to_text.src_tokens is not None
with torch.autocast(device_type=self.params.device.type, dtype=self.params.float_dtype):
loss = self.calc_loss(batch, *self.model(batch))
if loss.isnan():
logger.warning("Eval batch loss value is NaN, skipping")
continue
del batch # force memory release
loss_hist.update(1, loss.item())
eval_loss = loss_hist.reduce()
self._update_eval_stats(eval_loss)
def _train_step_log(self) -> None:
"""Log train stats"""
if (self.update_idx + 1) % self.params.log_steps == 0:
avg_loss = self.train_loss_hist.reduce()
self.train_loss_hist.reset()
logger.info(
f"Epoch {str(self.epoch_idx + 1).zfill(3)} / "
f"update {str(self.update_idx + 1).zfill(5)}: "
f"train loss={avg_loss:.4f} "
f"last lr={self.lr_scheduler.get_last_lr()[0]:.2E}"
)
def _train_step(self, batch_idx, batch: List[dataloader.MultimodalSeqsBatch]) -> None:
"""Run one train step"""
self.model.train()
with torch.autocast(device_type=self.params.device.type, dtype=self.params.float_dtype):
tokens, units = self.model(batch)
loss = self.calc_loss(batch, tokens, units)
if loss.isnan().any().item():
logger.error(batch.speech_to_text)
raise RuntimeError("Train loss is NaN! Something is wrong in the model!")
self.grad_scaler.scale(loss).backward()
self.grad_scaler.step(self.optimizer)
self.grad_scaler.update()
self.optimizer.zero_grad()
self.lr_scheduler.step()
assert batch.speech_to_text.src_tokens is not None
self.train_loss_hist.update(1, loss.item())
self._train_step_log()
self.update_idx += 1
def _save_model(self) -> None:
logger.info("Saving model")
if dist_utils.is_main_process():
if self.lora_config:
lora_unwraped_model = lora.unwrap_lora(copy.deepcopy(self.model))
torch.save({
"model_name": self.params.model_name,
"model": {
key.replace("module.model.model.", ""): value
for key, value in lora_unwraped_model.state_dict().items()
}
}, self.params.save_model_path)
else:
torch.save({
"model_name": self.params.model_name,
"model": {
key.replace("module.model.model.", ""): value
for key, value in self.model.state_dict().items()
}
}, self.params.save_model_path)
if dist_utils.is_dist_initialized():
dist.barrier()
def shift_and_delete_checkpoints(self):
if self.save_count > self.params.num_checkpoints_to_retain:
#shift checkpoints
for i in range(1,self.params.num_checkpoints_to_retain):
src_file = str(self.params.save_model_path).replace('.pt', f'_{i+1}.pt')
dst_file = str(self.params.save_model_path).replace('.pt', f'_{i}.pt')
if os.path.exists(src_file):
os.replace(src_file, dst_file)
return str(self.params.save_model_path).replace('.pt', f'_{self.params.num_checkpoints_to_retain}.pt')
else:
return str(self.params.save_model_path).replace('.pt', f'_{self.save_count}.pt')
def run(self) -> None:
logger.info("Start Finetuning")
self._reset_stats()
self._eval_model()
train_dataloader = self.train_data_loader.get_dataloader()
while self.epoch_idx < self.params.max_epochs and self.patience_left:
for batch_idx, train_batch in enumerate(tqdm(train_dataloader, desc="Training Steps")):
# Run batch through train step
self._train_step(batch_idx, train_batch)
# Perform eval if its time to eval
if not self.update_idx or self.update_idx % self.params.eval_steps != 0:
continue
# Clear GPU memory for eval
torch.cuda.empty_cache()
self._eval_model()
# Save the current model if its the best we've ever had
if self.is_best_state:
self._save_model()
elif not self.patience_left:
no_improve_steps = self.params.eval_steps * self.params.patience
logger.info(
"Early termination, as eval loss did not improve "
f"over last {no_improve_steps} updates"
)
break
self.epoch_idx += 1
Is it possible to fine-tune the model using a fine-tuning method such as LORA?