Open priamai opened 1 year ago
In general, you can use any column type from sqlalchemy
by specifying it in sa_column
:
class MetricBase(SQLModel):
id: Optional[int] = Field(default=None, primary_key=True)
fact_name: str
dimensions: Optional[List] = Field(default_factory=list, sa_column=Column(ARRAY(String)))
measures: Optional[List] = Field(default_factory=list, sa_column=Column(ARRAY(String)))
params: Optional[Dict] = Field(default_factory=dict, sa_column=Column(JSON))
Hello thanks, that makes sense, what will happen if the user gets confused. Stupid example:
class MetricBase(SQLModel):
id: Optional[int] = Field(default=None, primary_key=True)
fact_name: str
dimensions: Optional[List[int]] = Field(default_factory=list, sa_column=Column(ARRAY(String)))
measures: Optional[List[int]] = Field(default_factory=list, sa_column=Column(ARRAY(String)))
params: Optional[Dict] = Field(default_factory=dict, sa_column=Column(JSON))
I am actually testing it now...
This will cause confusion between the DB and your API (if you're using fastapi
for example, you won't be able to send non-int values) but it works manually.
works:
metric = Metric()
metric.fact_name = "test"
metric.dimensions = ["a", "b", "c"] # works!
metric.measures = [4, 5, 6]
metric.params = {"foo": "bar"}
session.add(metric)
session.commit()
not works:
app = FastAPI()
@app.post("/")
async def test_post(metric: Metric):
return metric
POST /
{
"id": 0,
"fact_name": "test",
"dimensions": [
"a",
"b",
"c"
],
"measures": [
4,
5,
6
],
"params": {
"foo": "bar"
}
}
{
"detail": [
{
"loc": [
"body",
"dimensions",
0
],
"msg": "value is not a valid integer",
"type": "type_error.integer"
},
{
"loc": [
"body",
"dimensions",
1
],
"msg": "value is not a valid integer",
"type": "type_error.integer"
},
{
"loc": [
"body",
"dimensions",
2
],
"msg": "value is not a valid integer",
"type": "type_error.integer"
}
]
}
Hello, thanks this makes total sense now. What happens when you don't specify the Field column, will the backend auto infer the nearest possible SQL column type? Also is it best practice to specify both default_factory (pydantic) and default for SA? Thanks again for the spoon feeding!
Responding to my own question I get this error:
ValueError: cannot specify both default and default_factory
You can find all conversions between python types and sqlalchemy types here:
It's preferred to use default_factory when you're dealing with mutable types.
First Check
Commit to Help
Example Code
Description
It would be nice to show a few examples about how to model arrays and json SQL columns. In general what principles should I follow to convert from a SQLAlchemy Table definition?
Operating System
Linux
Operating System Details
Ubuntu 21.0
SQLModel Version
0.0.8
Python Version
3.8.10
Additional Context
For example I am trying to convert this existing table: