Open ymcasky opened 6 years ago
Dear all,
My module is :
model = Sequential()
model.add(InputLayer(input_shape=(img_size_flat,)))
model.add(Reshape(img_shape_full))
model.add(Conv2D(kernel_size=5, strides=1, filters=16, padding='same', activation='relu', name='layer_conv1'))
model.add(MaxPooling2D(pool_size=2, strides=2))
model.add(Conv2D(kernel_size=5, strides=1, filters=36, padding='same', activation='relu', name='layer_conv2')) model.add(MaxPooling2D(pool_size=2, strides=2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
I have one question. Can I get the fc1 layers of keras and do the rest operation on tensorflow? Because I don't know how to customize some operation like L2-norm for fc2's weight on keras. But tf can do it like 🔢
def customize_fc2(fc1_input, Label, num_cls, name='customize_fc2')
w = tf.get_variable("customized/W", [xs[1], num_cls], dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer())
w = tf.nn.l2_normalize(w, dim = 0)
logits = tf.matmul(fc1_input, w)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=Label, logits=updated_logits))
return loss
Thanks for reply!!
Dear all,
My module is :
model = Sequential()
model.add(InputLayer(input_shape=(img_size_flat,)))
784->(28,28,1)
model.add(Reshape(img_shape_full))
model.add(Conv2D(kernel_size=5, strides=1, filters=16, padding='same', activation='relu', name='layer_conv1'))
model.add(MaxPooling2D(pool_size=2, strides=2))
model.add(Conv2D(kernel_size=5, strides=1, filters=36, padding='same', activation='relu', name='layer_conv2')) model.add(MaxPooling2D(pool_size=2, strides=2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
I have one question. Can I get the fc1 layers of keras and do the rest operation on tensorflow? Because I don't know how to customize some operation like L2-norm for fc2's weight on keras. But tf can do it like 🔢
def customize_fc2(fc1_input, Label, num_cls, name='customize_fc2')
w = tf.get_variable("customized/W", [xs[1], num_cls], dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer())
w = tf.nn.l2_normalize(w, dim = 0)
logits = tf.matmul(fc1_input, w)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=Label, logits=updated_logits))
return loss
Thanks for reply!!