Open shenchenbing opened 8 months ago
callbacks = [ keras.callbacks.ModelCheckpoint( filepath="convnet_from_scratch.keras", save_best_only=True, monitor="val_loss") ] history = model.fit( train_dataset, epochs=30, validation_data=validation_dataset, callbacks=callbacks)这步模型训练报错,input arguments看不出来问题
callbacks = [ keras.callbacks.ModelCheckpoint( filepath="convnet_from_scratch.keras", save_best_only=True, monitor="val_loss") ] history = model.fit( train_dataset, epochs=30, validation_data=validation_dataset, callbacks=callbacks)这步模型训练报错,input arguments看不出来问题
具体是报了什么错? 我倒是没碰到报错的情况,就是自己跑出来的测试精度和书里面有一些差异。
改成不用GPU就不报错。发自我的 iPhone在 2024年7月24日,14:33,shenchenbing @.***> 写道:
callbacks = [ keras.callbacks.ModelCheckpoint( filepath="convnet_from_scratch.keras", save_best_only=True, monitor="val_loss") ] history = model.fit( train_dataset, epochs=30, validation_data=validation_dataset, callbacks=callbacks)这步模型训练报错,input arguments看不出来问题
具体是报了什么错? 我倒是没碰到报错的情况,就是自己跑出来的测试精度和书里面有一些差异。
—Reply to this email directly, view it on GitHub, or unsubscribe.You are receiving this because you commented.Message ID: @.***>
<Deep Learning with Python 2nd Edition> Chapter 8.2 using a convnet model with data augmentation and dropout to classify images of dogs and cats. The book says that the test accuracy is 83.5% but I tried many times, using same model/code and same inputs but got all test accuracy results below 80%. Can anyone try those codes and get results around 83.5%? Or is the book description not correct?