fitzgeraldja / stc_unicef_cpi

MIT License
0 stars 0 forks source link

consider including hex count threshold here #43

Closed github-actions[bot] closed 2 years ago

github-actions[bot] commented 2 years ago

thr_df = pd.read_csv(thr_data)

thr_all = all_df.set_index('hex_code').loc[thr_df.hex_code].reset_index()

Select features to use

conflict and healthcare data, and FB connectivity data

"metric": "mse", # primary metrics for regression can be chosen from: ['mae','mse','r2']

"task": "regression", # task type

"seed": 42, # random seed

plt.barh(automl.feature_namesin, automl.featureimportances)

https://github.com/fitzgeraldja/stc_unicef_cpi/blob/574dd5cd9685df0d5b68674c359d7803c4a338be/src/stc_unicef_cpi/models/train_model.py#L212


import argparse
import sys
import warnings
from pathlib import Path

import mlflow
import numpy as np
import pandas as pd
import swifter
from flaml import AutoML
from flaml.ml import sklearn_metric_loss_score
from sklearn import set_config
from sklearn.compose import (
    ColumnTransformer,
    make_column_selector,
    make_column_transformer,
)
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer, SimpleImputer
from sklearn.metrics import mean_squared_error, r2_score  # , log_loss
from sklearn.model_selection import KFold, train_test_split
from sklearn.multioutput import MultiOutputRegressor
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.preprocessing import (
    OneHotEncoder,
    OrdinalEncoder,
    RobustScaler,
    StandardScaler,
)
from tqdm.auto import tqdm

from stc_unicef_cpi.utils.mlflow_utils import fetch_logged_data
from stc_unicef_cpi.utils.scoring import mae

# TODO: write proper warning handler to only suppress unhelpful msgs
warnings.filterwarnings("ignore")

if __name__ == "__main__":
    ### Argument and global variables
    parser = argparse.ArgumentParser("High-res multi-dim CPI model training")
    DATA_DIRECTORY = Path("../../../data")
    parser.add_argument(
        "-d",
        "--data",
        type=str,
        help="Pathway to data directory",
        default=DATA_DIRECTORY,
    )
    parser.add_argument(
        "--clean-name",
        type=str,
        help="Name of clean dataset inside data directory",
        default="clean_nga_w_autov1.csv",
    )
    parser.add_argument(
        "--country",
        type=str,
        help="Choice of which country to use for training - options are 'all', 'nigeria' or 'senegal'",
        default="all",
        choices=["all", "nigeria", "senegal"],
    )
    parser.add_argument(
        "-ip",
        "--interpretable",
        action="store_true",
        help="Make model (more) interpretable - no matter other flags, use only base (non auto-encoder) features so can explain",
    )
    parser.add_argument(
        "--universal-data-only",
        "-univ",
        action="store_true",
        help="Use only universal data (i.e. no country-specific data) - only applicable if --country!=all",
    )
    parser.add_argument(
        "--copy-to-nbrs",
        "-cp2nbr",
        action="store_true",
        help="Use expanded dataset, where 'ground-truth' values are copied to neighbouring cells",
    )
    parser.add_argument(
        "--aug_data", action="store_true", help="Augment data with group features"
    )
    parser.add_argument(
        "--subsel_data", action="store_true", help="Use feature subset selection"
    )
    parser.add_argument(
        "--prefix",
        type=str,
        default="",
        help="Prefix to name the saved models / checkpoints",
    )
    parser.add_argument("--n_runs", type=int, default=1, help="Number of runs")

    parser.add_argument(
        "--model",
        type=str,
        default="automl",
        choices=[
            "lgbm",
            "automl",
            # "xgb",
            # "huber",
            # "krr",
        ],
        help="Choice of model to train (and tune)",
    )
    parser.add_argument(
        "--test-size",
        type=float,
        default=0.2,
        help="Proportion of data to exclude for test evaluation, default is 0.2",
    )
    parser.add_argument(
        "--nfolds",
        type=int,
        default=5,
        help="Number of folds of training set for cross validation, default is 5",
    )
    parser.add_argument(
        "--cv-type",
        type=str,
        default="normal",
        choices=["normal", "stratified", "spatial"],
        help="Type of CV to use, default is normal, choices are normal (fully random), stratified and spatial",
    )
    parser.add_argument(
        "--target",
        type=str,
        default="all",
        choices=[
            "all",
            "education",
            "sanitation",
            "housing",
            "water",
            "av-severity",
            "av-prevalence",
        ],
        help="Target variable to use for training, default is all, choices are 'all' (train separate model for each of the following), 'av-severity' (average number of deprivations / child), 'av-prevalence' (average proportion of children with at least one deprivation), or proportion of children deprived in 'education', 'sanitation', 'housing', 'water'",
    )
    parser.add_argument(
        "--impute-gdp",
        type=str,
        default=None,
        choices=[None, "mean", "knn", "linear", "rf"],
        help="Impute GDP values prior to training, or leave as nan (default option)",
    )
    parser.add_argument(
        "--standardise",
        type=str,
        default=None,
        choices=[None, "standard", "minmax", "robust"],
        help="Standardise feature data prior to fitting model, options are None (default, leave raw), standard (z-score), minmax (min-max normalisation to limit to 0-1 range), or robust (median and quantile version of z-score)",
    )
    parser.add_argument(
        "--target-transform",
        type=str,
        default=None,
        choices=[None, "log", "power"],
        help="Transform target variable(s) prior to fitting model - choices of None (default, leave raw), 'log', 'power' (Yeo-Johnson)",
    )
    parser.add_argument(
        "--log-run",
        action="store_true",
        help="Use MLflow to log training run params + scores, by default in a /models/mlruns directory where /models is contained in same parent folder as args.data",
    )
    parser.add_argument(
        "--save-model",
        action="store_true",
        help="Save trained models (pickled), by default in a /models directory contained in same parent folder as args.data",
    )

    try:
        args = parser.parse_args()
    except argparse.ArgumentError:
        parser.print_help()
        sys.exit(0)

    DATA_DIRECTORY = Path(args.data)
    if args.save_model:
        SAVE_DIRECTORY = DATA_DIRECTORY.parent / "models"
        SAVE_DIRECTORY.mkdir(exist_ok=True)

    ### Load data
    # TODO: link w Dani's data generating pipeline
    if args.cp2nbr:
        # Load all NGA data (including expanded data)
        # TODO: include option to run on expanded dataset
        raise NotImplementedError("Not yet implemented")
    else:
        # Load all NGA data, using only specified (perturbed) locations
        XY = pd.read_csv(Path(args.data) / args.clean_name)
    if args.country != "all":
        # Want to either use preexisting data in location specified,
        # else produce data from scratch
        import geopandas as gpd
        import h3.api.numpy_int as h3
        from shapely.geometry import Point

        world = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres"))
        # world[world.name == "Nigeria"].geometry.__geo_interface__['features'][0]['geometry']
        ctry_name = args.country.capitalize()
        ctry_geom = world[world.name == ctry_name].geometry.values[0]
        XY = XY[
            XY.hex_code.swifter.apply(
                lambda x: Point(h3.h3_to_geo(x)[::-1])
            ).swifter.apply(lambda pt: pt.within(ctry_geom))
        ]

    XY["name_commuting_zone"] = XY["name_commuting_zone"].astype("category")
    # TODO: consider including hex count threshold here
    # thr_df = pd.read_csv(thr_data)
    # thr_all = all_df.set_index('hex_code').loc[thr_df.hex_code].reset_index()
    #### Select features to use
    start_idx = XY.columns.tolist().index("LATNUM")
    X = XY.iloc[:, start_idx:].copy()

    if args.univ:
        # Remove country specific data - e.g. in case of Nigeria,
        # conflict and healthcare data, and FB connectivity data
        pass
    if args.interpretable:
        # Remove auto-encoder features for more interpretable models
        pass
    #### Select target variables
    if args.target != "all":
        if args.target == "av-severity":
            target_name = "sumpoor_sev"
        elif args.target == "av-prevalence":
            target_name = "deprived_sev"
        else:
            target_name = f"dep_{args.target}_sev"
        Y = XY[target_name].copy()
    else:
        good_idxs = ["housing", "water", "sanitation", "education"]
        Y = XY[
            list(map(lambda x: f"dep_{x}_sev", good_idxs))
            + ["sumpoor_sev", "deprived_sev"]
        ].copy()

    X = None
    Y = None
    X_train, X_test, Y_train, Y_test = train_test_split(
        X, Y, test_size=0.2, random_state=42
    )

    if args.model == "automl":
        model = AutoML()
        # automl_pipeline
        automl_settings = {
            "time_budget": 60,  # total running time in seconds
            "metric": "mse",  # primary metrics for regression can be chosen from: ['mae','mse','r2']
            "task": "regression",  # task type
            "estimator_list": ["xgboost", "catboost", "lgbm"],
            "log_file_name": "automl.log",  # flaml log file
            "seed": 42,  # random seed
        }
        pipeline_settings = {
            f"automl__{key}": value for key, value in automl_settings.items()
        }
    else:
        raise NotImplementedError("Model not implemented")

    if args.impute_gdp is not None:
        imp = IterativeImputer(max_iter=10, random_state=42)
        imputer = SimpleImputer()

    set_config(display="diagram")

    if args.standardise is not None:
        standardiser = StandardScaler()

    pipeline = Pipeline(
        [("imputer", imputer), ("standardiser", standardiser), ("model", model)]
    )
    if args.log_run:
        MLFLOW_DIR = DATA_DIRECTORY.parent / "models" / "mlruns"
        MLFLOW_DIR.mkdir(exist_ok=True)

        mlflow.set_tracking_uri(MLFLOW_DIR)
        client = mlflow.tracking.MlflowClient()
        try:
            # Create an experiment name, which must be unique and case sensitive
            experiment_id = client.create_experiment(
                f"{args.country}-{args.target}-{args.model}"
            )
            # experiment = client.get_experiment(experiment_id)
        except ValueError:
            assert f"{args.country}-{args.target}-{args.model}" in [
                exp.name for exp in client.list_experiments()
            ]
            experiment_id = [
                exp.experiment_id
                for exp in client.list_experiments()
                if exp.name == f"{args.country}-{args.target}-{args.model}"
            ][0]
        mlflow.start_run(experiment_id=experiment_id)
    if len(Y.shape) == 1:
        pipeline.fit(X_train, Y_train, **pipeline_settings)
    else:
        for col_idx in range(Y_train.shape[1]):
            pipeline.fit(X_train, Y_train.values[:, col_idx], **pipeline_settings)

    if args.model == "automl":
        # get automl object back
        automl = pipeline.steps[2][1]
        # Get the best config and best learner
        print("Best ML learner:", automl.best_estimator)
        print("Best hyperparmeter config:", automl.best_config)
        print(f"Best accuracy on validation data: {1 - automl.best_loss:.4g}")
        print(
            "Training duration of best run: {:.4g} s".format(
                automl.best_config_train_time
            )
        )

        # plot basic feature importances
        # plt.barh(automl.feature_names_in_, automl.feature_importances_)

        # compute different metrics on test set
        y_pred = pipeline.predict(X_test)
        y_test = Y_test.values[:, col_idx]
        r2_val = 1 - sklearn_metric_loss_score("r2", y_pred, y_test)
        print("r2", "=", r2_val)
        mse_val = sklearn_metric_loss_score("mse", y_pred, y_test)
        print("mse", "=", mse_val)
        mae_val = sklearn_metric_loss_score("mae", y_pred, y_test)
        print("mae", "=", mae_val)
        if args.log_run:
            mlflow.log_param(key="best_model", value=automl.best_estimator)
            mlflow.log_params(automl.best_config)
            mlflow.log_metric(key="r2_score", value=r2_val)
            mlflow.log_metric(
                key="rmse",
                value=np.sqrt(mse_val),
            )
            mlflow.log_metric(
                key="mae",
                value=mae_val,
            )
    if args.log_run:
        mlflow.end_run()
github-actions[bot] commented 2 years ago

Closed in b33f4093e5d06107a6d6ebfdcd0722d26581b3fb