Open mkocabas opened 6 years ago
Epoch 00002: saving model to ./snapshots/resnet50_coco_02.h5
Loading and preparing results...
DONE (t=21.74s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=104.13s).
Accumulating evaluation results...
DONE (t=45.75s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.003
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.053
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.110
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.121
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.029
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.112
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.191
Epoch 3/144
10000/10000 [==============================] - 2317s 232ms/step - loss: 3.1109 - regression_loss: 2.2298 - classification_loss: 0.8811
Epoch 00003: saving model to ./snapshots/resnet50_coco_03.h5
Loading and preparing results...
DONE (t=15.26s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=87.05s).
Accumulating evaluation results...
DONE (t=33.70s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.004
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.008
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.006
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.063
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.134
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.144
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.044
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.135
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.227
Epoch 4/144
10000/10000 [==============================] - 2303s 230ms/step - loss: 2.9268 - regression_loss: 2.1220 - classification_loss: 0.8048
Epoch 00004: saving model to ./snapshots/resnet50_coco_04.h5
Loading and preparing results...
DONE (t=14.48s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=83.72s).
Accumulating evaluation results...
DONE (t=31.03s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.004
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.008
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.004
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.006
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.065
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.123
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.130
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.019
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.128
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.213
Epoch 5/144
10000/10000 [==============================] - 2309s 231ms/step - loss: 2.8028 - regression_loss: 2.0540 - classification_loss: 0.7488
Epoch 00005: saving model to ./snapshots/resnet50_coco_05.h5
Loading and preparing results...
DONE (t=3.64s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=26.98s).
Accumulating evaluation results...
DONE (t=3.74s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.006
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.002
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.004
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.004
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.008
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.010
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.008
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.011
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010
Epoch 6/144
10000/10000 [==============================] - 2314s 231ms/step - loss: 2.7722 - regression_loss: 2.0240 - classification_loss: 0.7482
Epoch 00006: saving model to ./snapshots/resnet50_coco_06.h5
Loading and preparing results...
DONE (t=6.09s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=48.02s).
Accumulating evaluation results...
DONE (t=15.48s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.014
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.007
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.007
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.013
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.082
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.134
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.136
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.037
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.136
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.217
Epoch 7/144
10000/10000 [==============================] - 2301s 230ms/step - loss: 2.6505 - regression_loss: 1.9545 - classification_loss: 0.6960
Epoch 00007: saving model to ./snapshots/resnet50_coco_07.h5
Loading and preparing results...
DONE (t=27.78s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=132.05s).
Accumulating evaluation results...
DONE (t=59.59s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.018
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.032
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.010
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.023
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.021
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.121
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.258
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.295
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.133
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.337
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.423
Epoch 8/144
10000/10000 [==============================] - 2322s 232ms/step - loss: 2.6217 - regression_loss: 1.9250 - classification_loss: 0.6966
Epoch 00008: saving model to ./snapshots/resnet50_coco_08.h5
Loading and preparing results...
DONE (t=20.77s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=112.51s).
Accumulating evaluation results...
DONE (t=55.75s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.021
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.038
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.022
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.011
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.026
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.028
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.129
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.262
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.289
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.111
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.318
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.438
Epoch 9/144
10000/10000 [==============================] - 2637s 264ms/step - loss: 2.5497 - regression_loss: 1.9000 - classification_loss: 0.6497 - ETA: 32:39 - loss: 2.6171 - regression_loss: 1.9622 - classification_loss: 0.654
Epoch 00009: saving model to ./snapshots/resnet50_coco_09.h5
Loading and preparing results...
DONE (t=24.63s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=119.16s).
Accumulating evaluation results...
DONE (t=51.94s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.025
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.044
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.025
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.015
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.031
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.030
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.137
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.279
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.316
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.140
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.351
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.455
Epoch 10/144
10000/10000 [==============================] - 2300s 230ms/step - loss: 2.5003 - regression_loss: 1.8702 - classification_loss: 0.6301
Epoch 00010: saving model to ./snapshots/resnet50_coco_10.h5
Loading and preparing results...
DONE (t=26.29s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=123.64s).
Accumulating evaluation results...
DONE (t=50.10s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.028
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.050
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.028
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.032
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.036
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.140
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.283
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.323
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.150
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.363
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.455
Epoch 11/144
10000/10000 [==============================] - 2317s 232ms/step - loss: 2.4756 - regression_loss: 1.8655 - classification_loss: 0.6101
Epoch 00011: saving model to ./snapshots/resnet50_coco_11.h5
Loading and preparing results...
DONE (t=23.79s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=116.43s).
Accumulating evaluation results...
DONE (t=44.67s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.037
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.064
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.038
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.018
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.044
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.045
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.155
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.304
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.345
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.153
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.386
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.488
Epoch 12/144
10000/10000 [==============================] - 2314s 231ms/step - loss: 2.4246 - regression_loss: 1.8341 - classification_loss: 0.5906
Epoch 00012: saving model to ./snapshots/resnet50_coco_12.h5
Loading and preparing results...
DONE (t=20.27s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=101.43s).
Accumulating evaluation results...
DONE (t=36.76s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.035
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.061
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.037
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.021
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.041
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.044
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.145
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.285
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.318
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.157
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.351
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.440
Epoch 13/144
10000/10000 [==============================] - 2318s 232ms/step - loss: 2.3977 - regression_loss: 1.7938 - classification_loss: 0.6039
Epoch 00013: saving model to ./snapshots/resnet50_coco_13.h5
Loading and preparing results...
DONE (t=27.21s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=119.76s).
Accumulating evaluation results...
DONE (t=54.21s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.041
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.071
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.043
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.021
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.044
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.052
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.159
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.313
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.363
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.180
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.408
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.502
Epoch 14/144
10000/10000 [==============================] - 2319s 232ms/step - loss: 2.3509 - regression_loss: 1.7823 - classification_loss: 0.5686
Epoch 00014: saving model to ./snapshots/resnet50_coco_14.h5
Loading and preparing results...
DONE (t=26.27s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=125.17s).
Accumulating evaluation results...
DONE (t=47.70s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.050
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.085
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.052
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.026
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.057
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.060
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.163
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.319
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.374
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.189
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.423
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.507
Epoch 15/144
10000/10000 [==============================] - 2316s 232ms/step - loss: 2.3316 - regression_loss: 1.7596 - classification_loss: 0.5720
Epoch 00015: saving model to ./snapshots/resnet50_coco_15.h5
Loading and preparing results...
DONE (t=16.75s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=105.06s).
Accumulating evaluation results...
DONE (t=35.95s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.052
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.088
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.056
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.029
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.060
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.066
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.164
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.313
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.355
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.155
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.401
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.507
Epoch 16/144
10000/10000 [==============================] - 2314s 231ms/step - loss: 2.2786 - regression_loss: 1.7342 - classification_loss: 0.5443
Epoch 00016: saving model to ./snapshots/resnet50_coco_16.h5
Loading and preparing results...
DONE (t=28.10s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=127.25s).
Accumulating evaluation results...
DONE (t=46.34s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.061
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.102
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.064
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.029
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.069
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.075
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.171
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.329
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.386
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.199
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.433
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.518
Epoch 17/144
10000/10000 [==============================] - 2321s 232ms/step - loss: 2.2666 - regression_loss: 1.7299 - classification_loss: 0.5367
Epoch 00017: saving model to ./snapshots/resnet50_coco_17.h5
Loading and preparing results...
DONE (t=18.41s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=104.45s).
Accumulating evaluation results...
DONE (t=36.99s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.059
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.099
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.062
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.033
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.076
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.077
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.170
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.317
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.363
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.161
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.408
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.515
Epoch 18/144
10000/10000 [==============================] - 2317s 232ms/step - loss: 2.2625 - regression_loss: 1.7269 - classification_loss: 0.5357
Epoch 00018: saving model to ./snapshots/resnet50_coco_18.h5
Loading and preparing results...
DONE (t=22.16s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=118.54s).
Accumulating evaluation results...
DONE (t=42.31s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.067
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.112
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.070
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.034
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.080
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.078
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.178
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.336
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.393
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.202
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.444
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.524
Epoch 19/144
10000/10000 [==============================] - 2322s 232ms/step - loss: 2.2549 - regression_loss: 1.7154 - classification_loss: 0.5395
Epoch 00019: saving model to ./snapshots/resnet50_coco_19.h5
Loading and preparing results...
DONE (t=24.19s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=110.37s).
Accumulating evaluation results...
DONE (t=45.92s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.069
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.117
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.073
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.033
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.079
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.086
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.176
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.337
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.392
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.201
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.439
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.528
Epoch 20/144
10000/10000 [==============================] - 2321s 232ms/step - loss: 2.2149 - regression_loss: 1.6986 - classification_loss: 0.5163
Epoch 00020: saving model to ./snapshots/resnet50_coco_20.h5
Loading and preparing results...
DONE (t=24.45s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=118.79s).
Accumulating evaluation results...
DONE (t=40.73s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.076
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.129
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.080
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.035
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.085
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.093
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.182
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.343
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.400
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.210
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.443
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.532
Epoch 21/144
10000/10000 [==============================] - 2319s 232ms/step - loss: 2.2228 - regression_loss: 1.7005 - classification_loss: 0.5224
Epoch 00021: saving model to ./snapshots/resnet50_coco_21.h5
Loading and preparing results...
DONE (t=18.70s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=106.55s).
Accumulating evaluation results...
DONE (t=36.06s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.077
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.129
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.081
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.037
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.092
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.094
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.178
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.338
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.390
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.194
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.438
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.537
Epoch 22/144
10000/10000 [==============================] - 2318s 232ms/step - loss: 2.1960 - regression_loss: 1.6878 - classification_loss: 0.5082
Epoch 00022: saving model to ./snapshots/resnet50_coco_22.h5
Loading and preparing results...
DONE (t=25.44s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=121.76s).
Accumulating evaluation results...
DONE (t=42.62s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.082
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.136
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.087
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.038
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.094
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.101
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.186
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.349
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.409
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.217
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.455
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.545
Epoch 23/144
10000/10000 [==============================] - 2318s 232ms/step - loss: 2.1866 - regression_loss: 1.6872 - classification_loss: 0.4993
Epoch 00023: saving model to ./snapshots/resnet50_coco_23.h5
Loading and preparing results...
DONE (t=26.03s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=127.11s).
Accumulating evaluation results...
DONE (t=42.67s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.086
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.142
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.091
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.039
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.095
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.106
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.188
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.351
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.410
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.227
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.457
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.537
Epoch 00024: saving model to ./snapshots/resnet50_coco_24.h5
Loading and preparing results...
DONE (t=18.67s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=109.31s).
Accumulating evaluation results...
DONE (t=35.58s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.090
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.148
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.095
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.042
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.108
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.111
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.192
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.355
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.409
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.213
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.455
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.552
Epoch 25/144
10000/10000 [==============================] - 2309s 231ms/step - loss: 2.1262 - regression_loss: 1.6423 - classification_loss: 0.4839
Epoch 00025: saving model to ./snapshots/resnet50_coco_25.h5
Loading and preparing results...
DONE (t=24.82s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=126.99s).
Accumulating evaluation results...
DONE (t=40.75s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.100
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.163
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.106
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.044
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.116
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.125
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.196
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.362
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.424
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.227
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.473
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.564
Epoch 00026: saving model to ./snapshots/resnet50_coco_26.h5
^[Loading and preparing results...
DONE (t=23.42s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=123.44s).
Accumulating evaluation results...
DONE (t=40.23s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.102
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.166
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.108
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.046
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.122
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.126
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.197
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.361
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.419
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.218
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.469
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.558
Epoch 27/144
10000/10000 [==============================] - 2301s 230ms/step - loss: 2.1063 - regression_loss: 1.6288 - classification_loss: 0.477$
Epoch 00027: saving model to ./snapshots/resnet50_coco_27.h5
Loading and preparing results...
DONE (t=20.22s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=117.86s).
Accumulating evaluation results...
DONE (t=39.87s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.103
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.168
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.109
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.045
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.116
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.125
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.198
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.364
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.422
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.222
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.470
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.566
Epoch 28/144
10000/10000 [==============================] - 2308s 231ms/step - loss: 2.0913 - regression_loss: 1.6164 - classification_loss: 0.4749
Epoch 00028: saving model to ./snapshots/resnet50_coco_28.h5
Loading and preparing results...
DONE (t=25.33s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=119.71s).
Accumulating evaluation results...
DONE (t=39.98s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.106
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.173
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.112
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.046
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.119
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.133
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.197
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.365
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.423
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.232
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.475
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.552
Epoch 29/144
10000/10000 [==============================] - 2303s 230ms/step - loss: 2.0960 - regression_loss: 1.6287 - classification_loss: 0.4674
Epoch 00029: saving model to ./snapshots/resnet50_coco_29.h5
Loading and preparing results...
DONE (t=16.57s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=99.23s).
Accumulating evaluation results...
DONE (t=30.29s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.108
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.178
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.114
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.049
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.123
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.133
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.199
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.361
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.410
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.219
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.457
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.537
Epoch 30/144
10000/10000 [==============================] - 2324s 232ms/step - loss: 2.0917 - regression_loss: 1.6216 - classification_loss: 0.4701
Epoch 00030: saving model to ./snapshots/resnet50_coco_30.h5
Loading and preparing results...
DONE (t=23.02s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=112.69s).
Accumulating evaluation results...
DONE (t=43.60s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.110
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.181
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.116
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.049
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.125
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.135
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.199
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.363
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.421
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.223
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.469
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.555
Epoch 31/144
10000/10000 [==============================] - 6602s 660ms/step - loss: 2.0839 - regression_loss: 1.6225 - classification_loss: 0.4614
Epoch 00031: saving model to ./snapshots/resnet50_coco_31.h5
Loading and preparing results...
DONE (t=19.17s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.66s).
Accumulating evaluation results...
DONE (t=34.44s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.113
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.184
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.118
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.051
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.126
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.142
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.201
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.363
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.417
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.224
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.461
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.557
Epoch 00032: saving model to ./snapshots/resnet50_coco_32.h5
Loading and preparing results...
DONE (t=23.64s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=113.27s).
Accumulating evaluation results...
DONE (t=35.76s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.117
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.191
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.124
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.052
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.131
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.146
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.203
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.374
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.435
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.238
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.487
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.570
Epoch 33/144
10000/10000 [==============================] - 2316s 232ms/step - loss: 2.0651 - regression_loss: 1.6121 - classification_loss: 0.4530
Epoch 00033: saving model to ./snapshots/resnet50_coco_33.h5
Loading and preparing results...
DONE (t=23.59s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=110.76s).
Accumulating evaluation results...
DONE (t=36.23s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.120
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.196
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.125
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.053
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.138
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.151
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.206
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.375
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.430
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.229
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.480
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.572
Epoch 34/144
10000/10000 [==============================] - 2315s 231ms/step - loss: 2.0466 - regression_loss: 1.5970 - classification_loss: 0.4495
Epoch 00034: saving model to ./snapshots/resnet50_coco_34.h5
Loading and preparing results...
DONE (t=23.81s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=108.46s).
Accumulating evaluation results...
DONE (t=35.14s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.125
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.204
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.132
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.053
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.139
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.156
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.207
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.377
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.440
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.244
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.492
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.574
Epoch 35/144
10000/10000 [==============================] - 2319s 232ms/step - loss: 2.0621 - regression_loss: 1.6092 - classification_loss: 0.4529
Epoch 00035: saving model to ./snapshots/resnet50_coco_35.h5
Loading and preparing results...
DONE (t=16.73s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=99.75s).
Accumulating evaluation results...
DONE (t=29.68s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.123
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.200
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.130
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.053
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.141
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.152
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.208
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.375
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.430
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.239
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.478
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.558
Epoch 36/144
10000/10000 [==============================] - 2320s 232ms/step - loss: 2.0321 - regression_loss: 1.5914 - classification_loss: 0.4406
Epoch 00036: saving model to ./snapshots/resnet50_coco_36.h5
Loading and preparing results...
DONE (t=19.43s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=108.65s).
Accumulating evaluation results...
DONE (t=33.29s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.125
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.206
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.131
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.056
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.147
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.158
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.211
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.380
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.441
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.236
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.493
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.585
Epoch 37/144
10000/10000 [==============================] - 2325s 233ms/step - loss: 2.0005 - regression_loss: 1.5581 - classification_loss: 0.4424
Epoch 00037: saving model to ./snapshots/resnet50_coco_37.h5
Loading and preparing results...
DONE (t=18.64s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=97.24s).
Accumulating evaluation results...
DONE (t=28.53s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.126
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.206
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.133
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.054
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.144
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.160
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.210
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.373
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.425
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.221
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.471
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.568
Epoch 38/144
10000/10000 [==============================] - 2322s 232ms/step - loss: 2.0016 - regression_loss: 1.5675 - classification_loss: 0.4342
Epoch 00038: saving model to ./snapshots/resnet50_coco_38.h5
Loading and preparing results...
DONE (t=21.29s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=107.70s).
Accumulating evaluation results...
DONE (t=32.05s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.132
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.216
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.139
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.059
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.145
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.164
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.214
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.384
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.445
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.260
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.495
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.578
Epoch 39/144
10000/10000 [==============================] - 2319s 232ms/step - loss: 1.9844 - regression_loss: 1.5537 - classification_loss: 0.4307
Epoch 00039: saving model to ./snapshots/resnet50_coco_39.h5
Loading and preparing results...
DONE (t=21.51s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=107.38s).
Accumulating evaluation results...
DONE (t=32.51s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.133
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.216
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.141
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.058
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.155
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.168
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.214
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.385
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.447
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.244
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.500
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.589
Epoch 40/144
10000/10000 [==============================] - 2321s 232ms/step - loss: 2.0092 - regression_loss: 1.5675 - classification_loss: 0.4416
Epoch 00040: saving model to ./snapshots/resnet50_coco_40.h5
Loading and preparing results...
DONE (t=20.31s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.47s).
Accumulating evaluation results...
DONE (t=31.19s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.132
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.216
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.139
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.057
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.153
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.169
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.214
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.383
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.443
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.244
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.491
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.582
Epoch 41/144
10000/10000 [==============================] - 2319s 232ms/step - loss: 1.9997 - regression_loss: 1.5578 - classification_loss: 0.4419
Epoch 00041: saving model to ./snapshots/resnet50_coco_41.h5
Loading and preparing results...
DONE (t=20.80s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=105.95s).
Accumulating evaluation results...
DONE (t=32.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.132
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.215
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.140
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.056
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.152
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.163
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.213
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.384
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.444
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.257
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.496
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.583
Epoch 42/144
10000/10000 [==============================] - 2319s 232ms/step - loss: 1.9909 - regression_loss: 1.5624 - classification_loss: 0.4285
Epoch 00042: saving model to ./snapshots/resnet50_coco_42.h5
Loading and preparing results...
DONE (t=19.05s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=108.15s).
Accumulating evaluation results...
DONE (t=32.80s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.138
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.223
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.147
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.061
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.159
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.175
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.218
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.390
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.452
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.265
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.501
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.597
Epoch 00042: ReduceLROnPlateau reducing learning rate to 6.249999860301614e-05.
Epoch 43/144
10000/10000 [==============================] - 2424s 242ms/step - loss: 1.9695 - regression_loss: 1.5447 - classification_loss: 0.4248
[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A
Epoch 00043: saving model to ./snapshots/resnet50_coco_43.h5
Loading and preparing results...
DONE (t=18.67s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=108.96s).
Accumulating evaluation results...
DONE (t=32.93s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.137
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.223
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.144
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.061
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.162
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.174
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.216
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.385
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.446
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.244
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.497
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.593
Epoch 44/144
10000/10000 [==============================] - 2331s 233ms/step - loss: 1.9714 - regression_loss: 1.5436 - classification_loss: 0.4278
Epoch 00044: saving model to ./snapshots/resnet50_coco_44.h5
Loading and preparing results...
DONE (t=18.67s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=97.01s).
Accumulating evaluation results...
DONE (t=27.63s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.141
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.229
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.147
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.061
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.159
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.174
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.217
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.387
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.442
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.247
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.494
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.575
Epoch 45/144
10000/10000 [==============================] - 2319s 232ms/step - loss: 1.9794 - regression_loss: 1.5512 - classification_loss: 0.4283
Epoch 00045: saving model to ./snapshots/resnet50_coco_45.h5
Loading and preparing results...
DONE (t=17.33s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.49s).
Accumulating evaluation results...
DONE (t=31.41s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.138
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.225
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.145
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.060
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.164
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.178
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.214
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.383
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.442
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.241
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.493
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.585
Epoch 46/144
10000/10000 [==============================] - 2319s 232ms/step - loss: 1.9806 - regression_loss: 1.5570 - classification_loss: 0.4236
Epoch 00046: saving model to ./snapshots/resnet50_coco_46.h5
Loading and preparing results...
DONE (t=15.25s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=92.96s).
Accumulating evaluation results...
DONE (t=28.83s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.141
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.231
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.149
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.061
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.160
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.175
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.217
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.383
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.435
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.237
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.484
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.569
Epoch 00046: ReduceLROnPlateau reducing learning rate to 6.249999860301614e-05.
Epoch 47/144
10000/10000 [==============================] - 2326s 233ms/step - loss: 1.9749 - regression_loss: 1.5563 - classification_loss: 0.4186
Epoch 00047: saving model to ./snapshots/resnet50_coco_47.h5
Loading and preparing results...
DONE (t=21.46s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=112.31s).
Accumulating evaluation results...
DONE (t=33.98s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.145
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.236
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.152
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.063
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.167
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.182
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.220
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.391
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.451
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.257
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.503
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.602
Epoch 47/144
10000/10000 [==============================] - 2326s 233ms/step - loss: 1.9749 - regression_loss: 1.5563 - classification_loss: 0.4186
Epoch 00047: saving model to ./snapshots/resnet50_coco_47.h5
Loading and preparing results...
DONE (t=21.46s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=112.31s).
Accumulating evaluation results...
DONE (t=33.98s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.145
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.236
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.152
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.063
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.167
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.182
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.220
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.391
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.451
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.257
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.503
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.602
Epoch 48/144
10000/10000 [==============================] - 2604s 260ms/step - loss: 1.9396 - regression_loss: 1.5217 - classification_loss: 0.4179
Epoch 00048: saving model to ./snapshots/resnet50_coco_48.h5
Loading and preparing results...
DONE (t=19.50s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=112.51s).
Accumulating evaluation results...
DONE (t=32.47s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.148
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.239
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.157
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.065
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.168
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.189
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.221
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.394
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.457
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.270
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.506
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.598
Epoch 49/144
10000/10000 [==============================] - 2322s 232ms/step - loss: 1.9254 - regression_loss: 1.5141 - classification_loss: 0.4112
Epoch 00049: saving model to ./snapshots/resnet50_coco_49.h5
Loading and preparing results...
DONE (t=21.17s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=101.65s).
Accumulating evaluation results...
DONE (t=36.27s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.148
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.239
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.155
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.065
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.170
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.185
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.220
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.395
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.456
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.268
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.508
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.599
Epoch 50/144
10000/10000 [==============================] - 2311s 231ms/step - loss: 1.9369 - regression_loss: 1.5225 - classification_loss: 0.4144
Epoch 50/144
10000/10000 [==============================] - 2311s 231ms/step - loss: 1.9369 - regression_loss: 1.5225 - classification_loss: 0.4144
Epoch 00050: saving model to ./snapshots/resnet50_coco_50.h5
Loading and preparing results...
DONE (t=21.16s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=105.13s).
Accumulating evaluation results...
DONE (t=31.04s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.150
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.241
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.158
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.067
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.170
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.192
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.222
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.395
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.455
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.260
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.508
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.601
Epoch 51/144
10000/10000 [==============================] - 2324s 232ms/step - loss: 1.9292 - regression_loss: 1.5160 - classification_loss: 0.4132
Epoch 00051: saving model to ./snapshots/resnet50_coco_51.h5
Loading and preparing results...
DONE (t=20.14s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.80s).
Accumulating evaluation results...
DONE (t=29.95s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.149
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.242
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.158
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.065
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.172
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.187
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.223
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.393
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.453
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.270
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.499
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.603
Epoch 52/144
10000/10000 [==============================] - 2329s 233ms/step - loss: 1.9113 - regression_loss: 1.5019 - classification_loss: 0.4094
Epoch 00052: saving model to ./snapshots/resnet50_coco_52.h5
Loading and preparing results...
DONE (t=15.94s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=93.20s).
Accumulating evaluation results...
DONE (t=26.17s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.150
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.244
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.159
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.064
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.169
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.193
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.222
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.391
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.443
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.254
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.491
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.584
Epoch 53/144
10000/10000 [==============================] - 2314s 231ms/step - loss: 1.9256 - regression_loss: 1.5138 - classification_loss: 0.4118
Epoch 00053: saving model to ./snapshots/resnet50_coco_53.h5
Loading and preparing results...
DONE (t=22.51s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=114.99s).
Accumulating evaluation results...
DONE (t=33.74s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.153
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.249
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.161
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.067
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.172
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.192
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.223
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.396
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.459
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.279
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.511
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.602
Epoch 54/144
10000/10000 [==============================] - 2315s 231ms/step - loss: 1.9096 - regression_loss: 1.5026 - classification_loss: 0.4069
Epoch 00054: saving model to ./snapshots/resnet50_coco_54.h5
Loading and preparing results...
DONE (t=15.85s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=94.60s).
Accumulating evaluation results...
DONE (t=26.70s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.154
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.248
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.162
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.067
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.176
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.194
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.224
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.393
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.450
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.252
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.497
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.595
Epoch 55/144
10000/10000 [==============================] - 2314s 231ms/step - loss: 1.9081 - regression_loss: 1.5017 - classification_loss: 0.4064
Epoch 00055: saving model to ./snapshots/resnet50_coco_55.h5
Loading and preparing results...
DONE (t=17.04s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.21s).
Accumulating evaluation results...
DONE (t=30.73s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.156
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.252
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.165
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.068
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.178
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.198
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.225
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.396
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.452
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.267
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.501
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.593
Epoch 56/144
10000/10000 [==============================] - 2334s 233ms/step - loss: 1.9143 - regression_loss: 1.5057 - classification_loss: 0.4087
Epoch 00056: saving model to ./snapshots/resnet50_coco_56.h5
Loading and preparing results...
DONE (t=20.86s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=104.42s).
Accumulating evaluation results...
DONE (t=29.20s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.155
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.251
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.164
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.067
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.177
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.198
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.224
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.396
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.457
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.269
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.507
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.593
Epoch 57/144
10000/10000 [==============================] - 2325s 233ms/step - loss: 1.9253 - regression_loss: 1.5230 - classification_loss: 0.4023
Epoch 00057: saving model to ./snapshots/resnet50_coco_57.h5
Loading and preparing results...
DONE (t=18.01s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.83s).
Accumulating evaluation results...
DONE (t=29.99s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.158
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.255
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.166
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.068
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.184
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.204
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.226
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.398
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.460
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.271
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.508
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.609
Epoch 58/144
10000/10000 [==============================] - 2325s 233ms/step - loss: 1.9203 - regression_loss: 1.5184 - classification_loss: 0.4019
Epoch 00058: saving model to ./snapshots/resnet50_coco_58.h5
Loading and preparing results...
DONE (t=17.96s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=104.09s).
Accumulating evaluation results...
DONE (t=29.07s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.160
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.256
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.168
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.069
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.182
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.204
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.227
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.401
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.461
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.271
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.513
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.605
Epoch 00058: ReduceLROnPlateau reducing learning rate to 6.249999860301614e-05.
Epoch 59/144
10000/10000 [==============================] - 2319s 232ms/step - loss: 1.9131 - regression_loss: 1.5096 - classification_loss: 0.4035
Epoch 00059: saving model to ./snapshots/resnet50_coco_59.h5
Loading and preparing results...
DONE (t=17.06s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=100.44s).
Accumulating evaluation results...
DONE (t=28.86s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.159
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.255
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.168
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.070
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.185
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.208
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.226
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.399
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.459
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.266
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.509
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.609
Epoch 60/144
10000/10000 [==============================] - 2322s 232ms/step - loss: 1.8745 - regression_loss: 1.4752 - classification_loss: 0.3993
Epoch 00060: saving model to ./snapshots/resnet50_coco_60.h5
Loading and preparing results...
DONE (t=20.03s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=97.71s).
Accumulating evaluation results...
DONE (t=34.10s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.161
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.260
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.170
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.071
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.182
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.208
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.227
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.400
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.460
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.275
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.508
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.605
Epoch 61/144
10000/10000 [==============================] - 2322s 232ms/step - loss: 1.8774 - regression_loss: 1.4802 - classification_loss: 0.3971
Epoch 00061: saving model to ./snapshots/resnet50_coco_61.h5
Loading and preparing results...
DONE (t=15.88s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=95.92s).
Accumulating evaluation results...
DONE (t=26.99s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.164
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.263
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.173
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.071
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.190
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.214
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.229
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.401
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.460
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.265
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.509
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.609
Epoch 62/144
10000/10000 [==============================] - 2323s 232ms/step - loss: 1.8831 - regression_loss: 1.4830 - classification_loss: 0.4000
Epoch 00062: saving model to ./snapshots/resnet50_coco_62.h5
Loading and preparing results...
DONE (t=19.19s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=94.17s).
Accumulating evaluation results...
DONE (t=31.98s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.163
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.261
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.173
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.071
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.187
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.213
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.227
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.398
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.457
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.268
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.505
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.605
Epoch 63/144
10000/10000 [==============================] - 2321s 232ms/step - loss: 1.8604 - regression_loss: 1.4653 - classification_loss: 0.3951
Epoch 00063: saving model to ./snapshots/resnet50_coco_63.h5
Loading and preparing results...
DONE (t=18.33s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=104.54s).
Accumulating evaluation results...
DONE (t=30.21s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.164
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.263
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.174
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.071
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.187
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.211
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.229
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.403
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.466
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.279
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.517
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.611
Epoch 64/144
10000/10000 [==============================] - 2316s 232ms/step - loss: 1.8826 - regression_loss: 1.4861 - classification_loss: 0.3965
Epoch 00064: saving model to ./snapshots/resnet50_coco_64.h5
Loading and preparing results...
DONE (t=18.43s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=104.58s).
Accumulating evaluation results...
DONE (t=30.22s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.163
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.264
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.172
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.070
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.187
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.210
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.229
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.402
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.465
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.275
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.516
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.609
Epoch 65/144
10000/10000 [==============================] - 2318s 232ms/step - loss: 1.8862 - regression_loss: 1.4906 - classification_loss: 0.3956
Epoch 00065: saving model to ./snapshots/resnet50_coco_65.h5
Loading and preparing results...
DONE (t=13.76s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=85.49s).
Accumulating evaluation results...
DONE (t=22.95s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.163
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.263
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.173
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.070
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.183
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.210
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.228
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.397
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.449
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.246
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.496
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.597
Epoch 66/144
10000/10000 [==============================] - 2316s 232ms/step - loss: 1.8708 - regression_loss: 1.4778 - classification_loss: 0.3930
Epoch 00066: saving model to ./snapshots/resnet50_coco_66.h5
Loading and preparing results...
DONE (t=19.52s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=99.45s).
Accumulating evaluation results...
DONE (t=28.19s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.166
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.265
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.175
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.072
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.186
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.214
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.230
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.402
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.462
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.270
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.511
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.613
Epoch 00066: ReduceLROnPlateau reducing learning rate to 6.249999860301614e-05.
Epoch 67/144
10000/10000 [==============================] - 2323s 232ms/step - loss: 1.8671 - regression_loss: 1.4753 - classification_loss: 0.3917
Epoch 00067: saving model to ./snapshots/resnet50_coco_67.h5
Loading and preparing results...
DONE (t=18.51s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=105.85s).
Accumulating evaluation results...
DONE (t=30.79s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.169
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.273
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.178
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.074
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.193
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.219
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.232
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.407
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.470
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.279
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.523
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.617
Epoch 68/144
10000/10000 [==============================] - 2324s 232ms/step - loss: 1.8555 - regression_loss: 1.4653 - classification_loss: 0.3901
Epoch 00068: saving model to ./snapshots/resnet50_coco_68.h5
Loading and preparing results...
DONE (t=15.68s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=94.50s).
Accumulating evaluation results...
DONE (t=26.04s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.168
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.272
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.176
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.072
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.188
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.214
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.230
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.404
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.462
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.277
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.515
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.602
Epoch 69/144
10000/10000 [==============================] - 2318s 232ms/step - loss: 1.8733 - regression_loss: 1.4819 - classification_loss: 0.3914
Epoch 00069: saving model to ./snapshots/resnet50_coco_69.h5
Loading and preparing results...
DONE (t=16.45s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=97.61s).
Accumulating evaluation results...
DONE (t=27.40s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.170
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.273
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.180
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.073
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.195
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.224
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.232
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.406
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.464
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.274
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.514
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.612
Epoch 70/144
10000/10000 [==============================] - 2331s 233ms/step - loss: 1.8648 - regression_loss: 1.4774 - classification_loss: 0.3874
Epoch 00070: saving model to ./snapshots/resnet50_coco_70.h5
Loading and preparing results...
DONE (t=20.06s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=97.82s).
Accumulating evaluation results...
DONE (t=34.27s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.171
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.275
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.180
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.075
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.193
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.224
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.231
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.406
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.467
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.282
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.519
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.612
Epoch 71/144
10000/10000 [==============================] - 2322s 232ms/step - loss: 1.8712 - regression_loss: 1.4809 - classification_loss: 0.3903
Epoch 00071: saving model to ./snapshots/resnet50_coco_71.h5
Loading and preparing results...
DONE (t=20.45s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.78s).
Accumulating evaluation results...
DONE (t=28.88s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.171
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.273
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.180
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.074
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.192
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.220
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.231
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.407
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.468
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.282
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.518
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.610
Epoch 00071: ReduceLROnPlateau reducing learning rate to 6.249999860301614e-05.
Epoch 72/144
10000/10000 [==============================] - 2322s 232ms/step - loss: 1.8300 - regression_loss: 1.4456 - classification_loss: 0.3844
Epoch 00072: saving model to ./snapshots/resnet50_coco_72.h5
Loading and preparing results...
DONE (t=18.03s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.99s).
Accumulating evaluation results...
DONE (t=29.80s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.173
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.277
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.182
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.074
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.193
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.223
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.231
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.407
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.468
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.281
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.520
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.614
Epoch 73/144
10000/10000 [==============================] - 2334s 233ms/step - loss: 1.8240 - regression_loss: 1.4422 - classification_loss: 0.3818
Epoch 00073: saving model to ./snapshots/resnet50_coco_73.h5
Loading and preparing results...
DONE (t=19.73s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=110.25s).
Accumulating evaluation results...
DONE (t=32.49s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.174
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.280
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.182
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.076
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.197
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.224
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.232
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.410
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.473
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.286
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.522
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.617
Epoch 74/144
10000/10000 [==============================] - 2319s 232ms/step - loss: 1.8407 - regression_loss: 1.4559 - classification_loss: 0.3848
Epoch 00074: saving model to ./snapshots/resnet50_coco_74.h5
Loading and preparing results...
DONE (t=16.85s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=99.72s).
Accumulating evaluation results...
DONE (t=25.03s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.172
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.276
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.181
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.074
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.191
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.223
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.232
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.403
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.455
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.264
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.500
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.604
Epoch 75/144
10000/10000 [==============================] - 2331s 233ms/step - loss: 1.8280 - regression_loss: 1.4459 - classification_loss: 0.3821
Epoch 00075: saving model to ./snapshots/resnet50_coco_75.h5
Loading and preparing results...
DONE (t=17.26s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=103.74s).
Accumulating evaluation results...
DONE (t=29.06s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.175
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.280
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.184
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.076
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.195
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.229
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.234
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.410
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.470
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.282
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.516
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.617
Epoch 76/144
10000/10000 [==============================] - 2321s 232ms/step - loss: 1.8315 - regression_loss: 1.4461 - classification_loss: 0.3854
Epoch 00076: saving model to ./snapshots/resnet50_coco_76.h5
Loading and preparing results...
DONE (t=19.65s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=95.87s).
Accumulating evaluation results...
DONE (t=32.55s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.173
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.279
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.182
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.076
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.195
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.227
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.231
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.404
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.465
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.279
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.514
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.614
Epoch 00076: ReduceLROnPlateau reducing learning rate to 6.249999860301614e-05.
Epoch 77/144
10000/10000 [==============================] - 2320s 232ms/step - loss: 1.8294 - regression_loss: 1.4477 - classification_loss: 0.3816
Epoch 00077: saving model to ./snapshots/resnet50_coco_77.h5
Loading and preparing results...
DONE (t=16.13s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=94.20s).
Accumulating evaluation results...
DONE (t=24.63s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.177
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.284
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.187
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.077
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.198
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.233
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.231
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.404
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.461
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.270
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.507
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.609
Epoch 78/144
10000/10000 [==============================] - 3226s 323ms/step - loss: 1.8381 - regression_loss: 1.4555 - classification_loss: 0.3827
Epoch 00078: saving model to ./snapshots/resnet50_coco_78.h5
Loading and preparing results...
DONE (t=21.73s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=120.19s).
Accumulating evaluation results...
DONE (t=33.28s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.178
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.285
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.186
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.076
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.199
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.230
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.234
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.407
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.469
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.281
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.517
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.612
Epoch 00078: ReduceLROnPlateau reducing learning rate to 6.249999860301614e-05.
Epoch 79/144
10000/10000 [==============================] - 2327s 233ms/step - loss: 1.8329 - regression_loss: 1.4518 - classification_loss: 0.3811
Epoch 00079: saving model to ./snapshots/resnet50_coco_79.h5
Loading and preparing results...
DONE (t=18.08s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=105.11s).
Accumulating evaluation results...
DONE (t=30.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.179
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.286
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.189
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.078
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.201
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.231
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.234
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.411
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.472
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.290
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.521
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.617
Epoch 00080: saving model to ./snapshots/resnet50_coco_80.h5
Loading and preparing results...
DONE (t=19.48s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=106.01s).
Accumulating evaluation results...
DONE (t=30.43s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.178
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.285
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.189
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.078
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.201
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.236
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.235
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.408
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.468
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.278
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.517
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.615
Epoch 00080: ReduceLROnPlateau reducing learning rate to 6.249999860301614e-05.
Epoch 81/144
10000/10000 [==============================] - 2323s 232ms/step - loss: 1.8248 - regression_loss: 1.4466 - classification_loss: 0.3782
Epoch 00081: saving model to ./snapshots/resnet50_coco_81.h5
Loading and preparing results...
DONE (t=19.65s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=102.48s).
Accumulating evaluation results...
DONE (t=30.37s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.178
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.286
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.189
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.080
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.201
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.233
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.234
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.411
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.471
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.283
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.520
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.613
Epoch 82/144
10000/10000 [==============================] - 2317s 232ms/step - loss: 1.8413 - regression_loss: 1.4610 - classification_loss: 0.3803
Epoch 00082: saving model to ./snapshots/resnet50_coco_82.h5
Loading and preparing results...
DONE (t=15.97s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=93.80s).
Accumulating evaluation results...
DONE (t=25.52s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.178
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.284
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.188
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.077
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.203
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.234
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.234
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.408
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.467
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.276
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.515
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.618
Epoch 00082: ReduceLROnPlateau reducing learning rate to 6.249999860301614e-05.
Hmm so it appears to be stuck around 0.180 mAP. Weird.. don't know why.
Yes. My take on is that: adopting detectron schedule directly can't be a good solution. We somehow inspect our SGD progress and devise a new schedule accordingly. Recently, detectron training logs were released, we can inspect them to take lessons.
Hmm interesting, hadn't looked at those logs yet. They only have a log shared for ResNeXt101, but still, the regression loss appears to be approx. 0.045403 at the end and the classification loss appears to be 0.069822. That's quite different from what we have (around 1.0 for regression and 0.2 for classification). Any thoughts on this difference?
I have the feeling that we at least normalize the regression incorrectly. I think we should divide the result by 4, since there are 4 values. In other words, we should compute the mean of the loss of every value that contributes (only positive anchors). Right now we only divide by the number of positive anchors.
@hgaiser, Sorry for the late reply. I downloaded all the logs, you can find the RetinaNet R50 log in this link. As you've said there's a problem with our normalization part, and also they calculate the loss in each FPN layer separately as you've discussed earlier.
You're right about regression, yet classification is different too. So, we should inspect the loss in detail, I can take a look at that in the upcoming days.
And here are the first and last batch output of the log in the link:
json_stats: {"eta": "1 day, 19:34:11", "fl_fpn3": 0.277938, "fl_fpn4": 0.251201, "fl_fpn5": 0.260509, "fl_fpn6": 0.266378, "fl_fpn7": 0.153842, "iter": 20, "loss": 1.674090, "lr": 0.003600, "mb_qsize": 57, "mem": 6927, "retnet_bg_num": 59370159.500000, "retnet_fg_num": 304.937500, "retnet_loss_bbox_fpn3": 0.082358, "retnet_loss_bbox_fpn4": 0.097458, "retnet_loss_bbox_fpn5": 0.103961, "retnet_loss_bbox_fpn6": 0.110748, "retnet_loss_bbox_fpn7": 0.061829, "time": 1.743187}
json_stats: {"eta": "0:00:00", "fl_fpn3": 0.055898, "fl_fpn4": 0.043042, "fl_fpn5": 0.033849, "fl_fpn6": 0.028231, "fl_fpn7": 0.015677, "iter": 89999, "loss": 0.265475, "lr": 0.000100, "mb_qsize": 64, "mem": 6953, "retnet_bg_num": 59366096.500000, "retnet_fg_num": 327.937500, "retnet_loss_bbox_fpn3": 0.026807, "retnet_loss_bbox_fpn4": 0.020230, "retnet_loss_bbox_fpn5": 0.018113, "retnet_loss_bbox_fpn6": 0.013119, "retnet_loss_bbox_fpn7": 0.009029, "time": 0.483498}
Do you guys have figured out what makes the loss value different from Detectron? I've seen the Detection schedule they released, found out that both classification and regerssion loss start at a much smaller value in the beginning than this repo, and end up with about 0.04~0.06. I'm also curious about why you use Adam optimizer and set the learning_rate at 1e-5 since they use SGD with lr=0.01? And also, according to their schedule, 12.19 epochs on COCO will make the model completly converge and get the best result, how about this repo?
I would also be interested in a training log for a fully converged model implemented in this repo. Is there a hope to see one?
I would also be interested in a training log for a fully converged model implemented in this repo. Is there a hope to see one?
No hope there. The current model is trained over many different runs, so there is no single log. It is also pretty difficult in my opinion because of the training optimizer and settings used. We would greatly benefit if someone takes the time to investigate how to train a COCO model more quickly.
I have started a training with image-net weights to test the
training-schedule
branch. I will update this issue regularly to report the findings.Training setting is:
dataset
: COCObatch-size
: 1GPU
: 1 x GTX1080Ti (I can switch to aP100
in the following days.)