Open florekem opened 5 days ago
But first, I'll try to do some more work with clustering.
SCT and different findneighbors/findclusters parameters:
1.
seu_singlet <- FindNeighbors(
seu_singlet,
reduction = "pca", dims = 1:20,
k.param = 20 # (default)
)
seu_singlet <- FindClusters(
seu_singlet,
resolution = 0.5, verbose = FALSE,
algorithm = 4 # leiden
)
seu_singlet <- RunUMAP(
seu_singlet,
reduction = "pca", dims = 1:20
)
2.
seu_singlet <- FindNeighbors(
seu_singlet,
reduction = "pca", dims = 1:20,
**k.param = 40**
)
seu_singlet <- FindClusters(
seu_singlet,
resolution = 0.5, verbose = FALSE,
algorithm = 4 # leiden
)
seu_singlet <- RunUMAP(
seu_singlet,
reduction = "pca", dims = 1:20
)
3.
seu_singlet <- FindNeighbors(
seu_singlet,
reduction = "pca", dims = 1:20,
k.param = 40,
annoy.metric = "manhattan"
)
seu_singlet <- FindClusters(
seu_singlet,
resolution = 0.5, verbose = FALSE,
algorithm = 4 # leiden
)
seu_singlet <- RunUMAP(
seu_singlet,
reduction = "pca", dims = 1:20
4.
dims = 1:30
seu_singlet <- FindNeighbors(
seu_singlet,
reduction = "pca", dims = dims,
k.param = 30,
annoy.metric = "manhattan"
)
seu_singlet <- FindClusters(
seu_singlet,
resolution = 0.5, verbose = FALSE,
algorithm = 4, # leiden
group.singletons = FALSE
)
seu_singlet <- RunUMAP(
seu_singlet,
reduction = "pca", dims = dims
)
5.
dims = 1:10
seu_singlet <- FindNeighbors(
seu_singlet,
reduction = "pca", dims = dims,
k.param = 30,
annoy.metric = "manhattan"
)
seu_singlet <- FindClusters(
seu_singlet,
resolution = 0.5, verbose = FALSE,
algorithm = 4, # leiden
group.singletons = FALSE
)
seu_singlet <- RunUMAP(
seu_singlet,
reduction = "pca", dims = dims
)
6.
dims = 1:15
seu_singlet <- FindNeighbors(
seu_singlet,
reduction = "pca", dims = dims,
k.param = 30,
annoy.metric = "manhattan"
)
seu_singlet <- FindClusters(
seu_singlet,
resolution = 0.5, verbose = FALSE,
algorithm = 4, # leiden
group.singletons = FALSE
)
seu_singlet <- RunUMAP(
seu_singlet,
reduction = "pca", dims = dims
)
1.1.
RDS/seu_singlet-clustered-27nov2024.rds
An object of class Seurat
64850 features across 15250 samples within 4 assays
Active assay: SCT (26200 features, 3000 variable features)
3 layers present: counts, data, scale.data
3 other assays present: RNA, HTO, ADT
2 dimensional reductions calculated: pca, umap
dims <- 1:20
seu_singlet <- FindNeighbors(
seu_singlet,
reduction = "pca", dims = dims,
k.param = 30
)
seu_singlet <- FindClusters(
seu_singlet,
resolution = 0.8, verbose = FALSE,
algorithm = 4, # leiden
group.singletons = FALSE
)
seu_singlet <- RunUMAP(
seu_singlet,
reduction = "pca", dims = dims
)
(it may be worth to remove them, but not sure, not too many of them)
Integration with HumanNewlyDiagnosed using scVI