flyingtango / DiGCN

Implement of DiGCN, NeurIPS-2020
MIT License
45 stars 8 forks source link

Can be applied to large-scale graph? #7

Open un0o7 opened 2 years ago

un0o7 commented 2 years ago

I think that this work cannot be applied to large-scale graphs for the reason that calculating the adj through your method needs eigen decomposition and to_dense() method needs large memory available. eig_value, left_vector = scipy.linalg.eig(p_ppr.numpy(),left=True,right=False) p_dense = torch.sparse.FloatTensor(edge_index, p, torch.Size([num_nodes,num_nodes])).to_dense()

hosseinghorbanzadeh commented 7 months ago

Yes, it can be used