Traceback (most recent call last):
File "/lus/grand/projects/datascience/regele/polaris/lcdb/publications/2023-neurips/lcdb/controller.py", line 208, in fit_workflow_on_current_anchor
self.workflow.fit(
File "/lus/grand/projects/datascience/regele/polaris/lcdb/publications/2023-neurips/lcdb/utils.py", line 67, in terminate_on_timeout
return results.get(timeout)
File "/lus/grand/projects/datascience/regele/polaris/lcdb/publications/2023-neurips/build/dhenv/lib/python3.10/multiprocessing/pool.py", line 774, in get
raise self._value
File "/lus/grand/projects/datascience/regele/polaris/lcdb/publications/2023-neurips/build/dhenv/lib/python3.10/multiprocessing/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "/lus/grand/projects/datascience/regele/polaris/lcdb/publications/2023-neurips/lcdb/workflow/_base_workflow.py", line 31, in fit
self._fit(X=X, y=y, metadata=metadata, *args, **kwargs)
File "/lus/grand/projects/datascience/regele/polaris/lcdb/publications/2023-neurips/lcdb/workflow/sklearn/_randomforest.py", line 186, in _fit
scorer.score(
File "/lus/grand/projects/datascience/regele/polaris/lcdb/publications/2023-neurips/lcdb/scorer.py", line 80, in score
roc_auc_score(
File "/lus/grand/projects/datascience/regele/polaris/lcdb/publications/2023-neurips/build/dhenv/lib/python3.10/site-packages/sklearn/utils/_param_validation.py", line 214, in wrapper
return func(*args, **kwargs)
File "/lus/grand/projects/datascience/regele/polaris/lcdb/publications/2023-neurips/build/dhenv/lib/python3.10/site-packages/sklearn/metrics/_ranking.py", line 621, in roc_auc_score
return _multiclass_roc_auc_score(
File "/lus/grand/projects/datascience/regele/polaris/lcdb/publications/2023-neurips/build/dhenv/lib/python3.10/site-packages/sklearn/metrics/_ranking.py", line 694, in _multiclass_roc_auc_score
raise ValueError(
ValueError: Target scores need to be probabilities for multiclass roc_auc, i.e. they should sum up to 1.0 over classes
The following command triggers a
ValueError
:Output: