frankkramer-lab / MIScnn

A framework for Medical Image Segmentation with Convolutional Neural Networks and Deep Learning
GNU General Public License v3.0
406 stars 115 forks source link

Bug on predict with a batch in fullimage analysis mode #50

Open jumutc opened 4 years ago

jumutc commented 4 years ago

In the fullimage mode I get this on predicting a batch:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-9-62969af658b9> in <module>
----> 1 model.predict(sample_list[0:2])

~\anaconda3\envs\bacteria_cfu\lib\site-packages\miscnn\neural_network\model.py in predict(self, sample_list, return_output, activation_output)
    168             # Postprocess prediction
    169             pred_seg = self.preprocessor.postprocessing(sample, pred_seg,
--> 170                                                         activation_output)
    171             # Backup predicted segmentation
    172             if return_output : results.append(pred_seg)

~\anaconda3\envs\bacteria_cfu\lib\site-packages\miscnn\processing\preprocessor.py in postprocessing(self, sample, prediction, activation_output)
    205                                     three_dim=self.data_io.interface.three_dim)
    206         # For fullimages remove the batch axis
--> 207         else : prediction = np.squeeze(prediction, axis=0)
    208         # Transform probabilities to classes
    209         if not activation_output : prediction = np.argmax(prediction, axis=-1)

<__array_function__ internals> in squeeze(*args, **kwargs)

~\anaconda3\envs\bacteria_cfu\lib\site-packages\numpy\core\fromnumeric.py in squeeze(a, axis)
   1481         return squeeze()
   1482     else:
-> 1483         return squeeze(axis=axis)
   1484 
   1485 

ValueError: cannot select an axis to squeeze out which has size not equal to one

It is interesting that executing this predict the second time everything works!

jumutc commented 4 years ago

Bug randomly reproduced in version 1.0.3 as well

muellerdo commented 4 years ago

Hey @jumutc,

sorry for the late reply.

Can you elaborate & describe the bug a little bit more.

It is interesting that executing this predict the second time everything works!

This is quite odd.

Are you using a patchwise strategy with an overlap between patches? Something like 'pp.patchwise_overlap = (80,80,40)'.

And if you are using fullimage, I assume you are analysing 2D images, right? Did you ensure via e.g. resizing that all images have the same shape?

Cheers, Dominik

jumutc commented 4 years ago

Hi @muellerdo,

The dataset is 2D images and the pipeline looks like this:

# Create a pixel value normalization Subfunction for z-score scaling
sf_zscore = Normalization(mode="z-score")
# Create a resizing Subfunction to shape 592x592
sf_resize = Resize((592, 592))
# sf_resize = Resize((768, 768))

# Assemble Subfunction classes into a list
sf = [sf_resize, sf_zscore]
# Configure data augmentation part
aug = Data_Augmentation(cycles=3, scaling=False, rotations=False,
                        elastic_deform=False, mirror=False, brightness=True,
                        contrast=True, gamma=True, gaussian_noise=True)
aug.config_p_per_sample = 0.35
aug.config_contrast_range = (0.1, 5)
aug.config_brightness_range = (0.1, 5)
aug.config_gaussian_noise_range = (0.01, 0.5)
# Initialize Preprocessor
pp = Preprocessor(data_io, batch_size=5, subfunctions=sf,
                  prepare_subfunctions=True, prepare_batches=False,
                  data_aug=aug, analysis="fullimage")

 # Create the Neural Network model
model = Neural_Network(preprocessor=pp, loss=tversky_crossentropy,
                       metrics=[tversky_loss, dice_soft, dice_crossentropy],
                       batch_queue_size=10, workers=5, learninig_rate=2e-4, 
                       architecture=Architecture())
...
cb_lr = LearningRateScheduler(scheduler)
cb_es = EarlyStopping(monitor='loss', mode='min', min_delta=0.0001, patience=10)
cb_tb = TensorBoard(log_dir="tensorboard", histogram_freq=0, write_graph=True, write_images=True)

model.train(sample_list[2:], epochs=100, iterations=500, callbacks=[cb_lr, cb_es, cb_tb])
model.predict(sample_list[0:2])

and the problem is at the last stage on predict.

muellerdo commented 4 years ago

Mhm. Normally, the number of predicted batches for fullimage should be 1 because MIScnn run inferences just for one sample and there is no patches obviously.

Puh, can you try reducing the batch size to 1 via something like this:

# Training model like usual
...
model.train(...)

# Define a new Preprocessor class for prediction -> just for debugging
model.preprocessor = Preprocessor(data_io, batch_size=1, subfunctions=sf,
                  prepare_subfunctions=True, prepare_batches=False,
                  data_aug=aug, analysis="fullimage")
# Run inference
model.predict(sample_list[0:2])

And then see if its working?

jumutc commented 3 years ago

Hi @muellerdo,

With batch_size 1 and 3 everything works and also sometimes with 2. And this is very strange and wonky for reproducibility bug. Cannot add anything more to it!