"""
Tests for array coercion, mainly through testing `np.array` results directly.
Note that other such tests exist e.g. in `test_api.py` and many corner-cases
are tested (sometimes indirectly) elsewhere.
"""
import pytest
from pytest import param
from itertools import product
import numpy as np
from numpy.core._rational_tests import rational
from numpy.core._multiarray_umath import _discover_array_parameters
from numpy.testing import (
assert_array_equal, assert_warns, IS_PYPY)
def arraylikes():
"""
Generator for functions converting an array into various array-likes.
If full is True (default) includes array-likes not capable of handling
all dtypes
"""
# base array:
def ndarray(a):
return a
yield param(ndarray, id="ndarray")
# subclass:
class MyArr(np.ndarray):
pass
def subclass(a):
return a.view(MyArr)
yield subclass
class _SequenceLike():
# We are giving a warning that array-like's were also expected to be
# sequence-like in `np.array([array_like])`, this can be removed
# when the deprecation exired (started NumPy 1.20)
def __len__(self):
raise TypeError
def __getitem__(self):
raise TypeError
# Array-interface
class ArrayDunder(_SequenceLike):
def __init__(self, a):
self.a = a
def __array__(self, dtype=None):
return self.a
yield param(ArrayDunder, id="__array__")
# memory-view
yield param(memoryview, id="memoryview")
# Array-interface
class ArrayInterface(_SequenceLike):
def __init__(self, a):
self.a = a # need to hold on to keep interface valid
self.__array_interface__ = a.__array_interface__
yield param(ArrayInterface, id="__array_interface__")
# Array-Struct
class ArrayStruct(_SequenceLike):
def __init__(self, a):
self.a = a # need to hold on to keep struct valid
self.__array_struct__ = a.__array_struct__
yield param(ArrayStruct, id="__array_struct__")
def scalar_instances(times=True, extended_precision=True, user_dtype=True):
# Hard-coded list of scalar instances.
# Floats:
yield param(np.sqrt(np.float16(5)), id="float16")
yield param(np.sqrt(np.float32(5)), id="float32")
yield param(np.sqrt(np.float64(5)), id="float64")
if extended_precision:
yield param(np.sqrt(np.longdouble(5)), id="longdouble")
# Complex:
yield param(np.sqrt(np.complex64(2+3j)), id="complex64")
yield param(np.sqrt(np.complex128(2+3j)), id="complex128")
if extended_precision:
yield param(np.sqrt(np.longcomplex(2+3j)), id="clongdouble")
# Bool:
# XFAIL: Bool should be added, but has some bad properties when it
# comes to strings, see also gh-9875
# yield param(np.bool_(0), id="bool")
# Integers:
yield param(np.int8(2), id="int8")
yield param(np.int16(2), id="int16")
yield param(np.int32(2), id="int32")
yield param(np.int64(2), id="int64")
yield param(np.uint8(2), id="uint8")
yield param(np.uint16(2), id="uint16")
yield param(np.uint32(2), id="uint32")
yield param(np.uint64(2), id="uint64")
# Rational:
if user_dtype:
yield param(rational(1, 2), id="rational")
# Cannot create a structured void scalar directly:
structured = np.array([(1, 3)], "i,i")[0]
assert isinstance(structured, np.void)
assert structured.dtype == np.dtype("i,i")
yield param(structured, id="structured")
if times:
# Datetimes and timedelta
yield param(np.timedelta64(2), id="timedelta64[generic]")
yield param(np.timedelta64(23, "s"), id="timedelta64[s]")
yield param(np.timedelta64("NaT", "s"), id="timedelta64[s](NaT)")
yield param(np.datetime64("NaT"), id="datetime64[generic](NaT)")
yield param(np.datetime64("2020-06-07 12:43", "ms"), id="datetime64[ms]")
# Strings and unstructured void:
yield param(np.bytes_(b"1234"), id="bytes")
yield param(np.unicode_("2345"), id="unicode")
yield param(np.void(b"4321"), id="unstructured_void")
def is_parametric_dtype(dtype):
"""Returns True if the the dtype is a parametric legacy dtype (itemsize
is 0, or a datetime without units)
"""
if dtype.itemsize == 0:
return True
if issubclass(dtype.type, (np.datetime64, np.timedelta64)):
if dtype.name.endswith("64"):
# Generic time units
return True
return False
class TestStringDiscovery:
@pytest.mark.parametrize("obj",
[object(), 1.2, 10**43, None, "string"],
ids=["object", "1.2", "10**43", "None", "string"])
def test_basic_stringlength(self, obj):
length = len(str(obj))
expected = np.dtype(f"S{length}")
assert np.array(obj, dtype="S").dtype == expected
assert np.array([obj], dtype="S").dtype == expected
# A nested array is also discovered correctly
arr = np.array(obj, dtype="O")
assert np.array(arr, dtype="S").dtype == expected
# Check that .astype() behaves identical
assert arr.astype("S").dtype == expected
@pytest.mark.parametrize("obj",
[object(), 1.2, 10**43, None, "string"],
ids=["object", "1.2", "10**43", "None", "string"])
def test_nested_arrays_stringlength(self, obj):
length = len(str(obj))
expected = np.dtype(f"S{length}")
arr = np.array(obj, dtype="O")
assert np.array([arr, arr], dtype="S").dtype == expected
@pytest.mark.parametrize("arraylike", arraylikes())
def test_unpack_first_level(self, arraylike):
# We unpack exactly one level of array likes
obj = np.array([None])
obj[0] = np.array(1.2)
# the length of the included item, not of the float dtype
length = len(str(obj[0]))
expected = np.dtype(f"S{length}")
obj = arraylike(obj)
# casting to string usually calls str(obj)
arr = np.array([obj], dtype="S")
assert arr.shape == (1, 1)
assert arr.dtype == expected
class TestScalarDiscovery:
def test_void_special_case(self):
# Void dtypes with structures discover tuples as elements
arr = np.array((1, 2, 3), dtype="i,i,i")
assert arr.shape == ()
arr = np.array([(1, 2, 3)], dtype="i,i,i")
assert arr.shape == (1,)
def test_char_special_case(self):
arr = np.array("string", dtype="c")
assert arr.shape == (6,)
assert arr.dtype.char == "c"
arr = np.array(["string"], dtype="c")
assert arr.shape == (1, 6)
assert arr.dtype.char == "c"
def test_char_special_case_deep(self):
# Check that the character special case errors correctly if the
# array is too deep:
nested = ["string"] # 2 dimensions (due to string being sequence)
for i in range(np.MAXDIMS - 2):
nested = [nested]
arr = np.array(nested, dtype='c')
assert arr.shape == (1,) * (np.MAXDIMS - 1) + (6,)
with pytest.raises(ValueError):
np.array([nested], dtype="c")
def test_unknown_object(self):
arr = np.array(object())
assert arr.shape == ()
assert arr.dtype == np.dtype("O")
@pytest.mark.parametrize("scalar", scalar_instances())
def test_scalar(self, scalar):
arr = np.array(scalar)
assert arr.shape == ()
assert arr.dtype == scalar.dtype
arr = np.array([[scalar, scalar]])
assert arr.shape == (1, 2)
assert arr.dtype == scalar.dtype
# Additionally to string this test also runs into a corner case
# with datetime promotion (the difference is the promotion order).
def test_scalar_promotion(self):
for sc1, sc2 in product(scalar_instances(), scalar_instances()):
sc1, sc2 = sc1.values[0], sc2.values[0]
# test all combinations:
try:
arr = np.array([sc1, sc2])
except (TypeError, ValueError):
# The promotion between two times can fail
# XFAIL (ValueError): Some object casts are currently undefined
continue
assert arr.shape == (2,)
try:
dt1, dt2 = sc1.dtype, sc2.dtype
expected_dtype = np.promote_types(dt1, dt2)
assert arr.dtype == expected_dtype
except TypeError as e:
# Will currently always go to object dtype
assert arr.dtype == np.dtype("O")
@pytest.mark.parametrize("scalar", scalar_instances())
def test_scalar_coercion(self, scalar):
# This tests various scalar coercion paths, mainly for the numerical
# types. It includes some paths not directly related to `np.array`
if isinstance(scalar, np.inexact):
# Ensure we have a full-precision number if available
scalar = type(scalar)((scalar * 2)**0.5)
if type(scalar) is rational:
# Rational generally fails due to a missing cast. In the future
# object casts should automatically be defined based on `setitem`.
pytest.xfail("Rational to object cast is undefined currently.")
# Use casting from object:
arr = np.array(scalar, dtype=object).astype(scalar.dtype)
# Test various ways to create an array containing this scalar:
arr1 = np.array(scalar).reshape(1)
arr2 = np.array([scalar])
arr3 = np.empty(1, dtype=scalar.dtype)
arr3[0] = scalar
arr4 = np.empty(1, dtype=scalar.dtype)
arr4[:] = [scalar]
# All of these methods should yield the same results
assert_array_equal(arr, arr1)
assert_array_equal(arr, arr2)
assert_array_equal(arr, arr3)
assert_array_equal(arr, arr4)
@pytest.mark.xfail(IS_PYPY, reason="`int(np.complex128(3))` fails on PyPy")
@pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
@pytest.mark.parametrize("cast_to", scalar_instances())
def test_scalar_coercion_same_as_cast_and_assignment(self, cast_to):
"""
Test that in most cases:
* `np.array(scalar, dtype=dtype)`
* `np.empty((), dtype=dtype)[()] = scalar`
* `np.array(scalar).astype(dtype)`
should behave the same. The only exceptions are paramteric dtypes
(mainly datetime/timedelta without unit) and void without fields.
"""
dtype = cast_to.dtype # use to parametrize only the target dtype
for scalar in scalar_instances(times=False):
scalar = scalar.values[0]
if dtype.type == np.void:
if scalar.dtype.fields is not None and dtype.fields is None:
# Here, coercion to "V6" works, but the cast fails.
# Since the types are identical, SETITEM takes care of
# this, but has different rules than the cast.
with pytest.raises(TypeError):
np.array(scalar).astype(dtype)
np.array(scalar, dtype=dtype)
np.array([scalar], dtype=dtype)
continue
# The main test, we first try to use casting and if it succeeds
# continue below testing that things are the same, otherwise
# test that the alternative paths at least also fail.
try:
cast = np.array(scalar).astype(dtype)
except (TypeError, ValueError, RuntimeError):
# coercion should also raise (error type may change)
with pytest.raises(Exception):
np.array(scalar, dtype=dtype)
if (isinstance(scalar, rational) and
np.issubdtype(dtype, np.signedinteger)):
return
with pytest.raises(Exception):
np.array([scalar], dtype=dtype)
# assignment should also raise
res = np.zeros((), dtype=dtype)
with pytest.raises(Exception):
res[()] = scalar
return
# Non error path:
arr = np.array(scalar, dtype=dtype)
assert_array_equal(arr, cast)
# assignment behaves the same
ass = np.zeros((), dtype=dtype)
ass[()] = scalar
assert_array_equal(ass, cast)
@pytest.mark.parametrize("dtype_char", np.typecodes["All"])
def test_default_dtype_instance(self, dtype_char):
if dtype_char in "SU":
dtype = np.dtype(dtype_char + "1")
elif dtype_char == "V":
# Legacy behaviour was to use V8. The reason was float64 being the
# default dtype and that having 8 bytes.
dtype = np.dtype("V8")
else:
dtype = np.dtype(dtype_char)
discovered_dtype, _ = _discover_array_parameters([], type(dtype))
assert discovered_dtype == dtype
assert discovered_dtype.itemsize == dtype.itemsize
@pytest.mark.parametrize("dtype", np.typecodes["Integer"])
def test_scalar_to_int_coerce_does_not_cast(self, dtype):
"""
Signed integers are currently different in that they do not cast other
NumPy scalar, but instead use scalar.__int__(). The harcoded
exception to this rule is `np.array(scalar, dtype=integer)`.
"""
dtype = np.dtype(dtype)
invalid_int = np.ulonglong(-1)
float_nan = np.float64(np.nan)
for scalar in [float_nan, invalid_int]:
# This is a special case using casting logic and thus not failing:
coerced = np.array(scalar, dtype=dtype)
cast = np.array(scalar).astype(dtype)
assert_array_equal(coerced, cast)
# However these fail:
with pytest.raises((ValueError, OverflowError)):
np.array([scalar], dtype=dtype)
with pytest.raises((ValueError, OverflowError)):
cast[()] = scalar
class TestTimeScalars:
@pytest.mark.parametrize("dtype", [np.int64, np.float32])
@pytest.mark.parametrize("scalar",
[param(np.timedelta64("NaT", "s"), id="timedelta64[s](NaT)"),
param(np.timedelta64(123, "s"), id="timedelta64[s]"),
param(np.datetime64("NaT", "generic"), id="datetime64[generic](NaT)"),
param(np.datetime64(1, "D"), id="datetime64[D]")],)
def test_coercion_basic(self, dtype, scalar):
# Note the `[scalar]` is there because np.array(scalar) uses stricter
# `scalar.__int__()` rules for backward compatibility right now.
arr = np.array(scalar, dtype=dtype)
cast = np.array(scalar).astype(dtype)
assert_array_equal(arr, cast)
ass = np.ones((), dtype=dtype)
if issubclass(dtype, np.integer):
with pytest.raises(TypeError):
# raises, as would np.array([scalar], dtype=dtype), this is
# conversion from times, but behaviour of integers.
ass[()] = scalar
else:
ass[()] = scalar
assert_array_equal(ass, cast)
@pytest.mark.parametrize("dtype", [np.int64, np.float32])
@pytest.mark.parametrize("scalar",
[param(np.timedelta64(123, "ns"), id="timedelta64[ns]"),
param(np.timedelta64(12, "generic"), id="timedelta64[generic]")])
def test_coercion_timedelta_convert_to_number(self, dtype, scalar):
# Only "ns" and "generic" timedeltas can be converted to numbers
# so these are slightly special.
arr = np.array(scalar, dtype=dtype)
cast = np.array(scalar).astype(dtype)
ass = np.ones((), dtype=dtype)
ass[()] = scalar # raises, as would np.array([scalar], dtype=dtype)
assert_array_equal(arr, cast)
assert_array_equal(cast, cast)
@pytest.mark.parametrize("dtype", ["S6", "U6"])
@pytest.mark.parametrize(["val", "unit"],
[param(123, "s", id="[s]"), param(123, "D", id="[D]")])
def test_coercion_assignment_datetime(self, val, unit, dtype):
# String from datetime64 assignment is currently special cased to
# never use casting. This is because casting will error in this
# case, and traditionally in most cases the behaviour is maintained
# like this. (`np.array(scalar, dtype="U6")` would have failed before)
# TODO: This discrepency _should_ be resolved, either by relaxing the
# cast, or by deprecating the first part.
scalar = np.datetime64(val, unit)
dtype = np.dtype(dtype)
cut_string = dtype.type(str(scalar)[:6])
arr = np.array(scalar, dtype=dtype)
assert arr[()] == cut_string
ass = np.ones((), dtype=dtype)
ass[()] = scalar
assert ass[()] == cut_string
with pytest.raises(RuntimeError):
# However, unlike the above assignment using `str(scalar)[:6]`
# due to being handled by the string DType and not be casting
# the explicit cast fails:
np.array(scalar).astype(dtype)
@pytest.mark.parametrize(["val", "unit"],
[param(123, "s", id="[s]"), param(123, "D", id="[D]")])
def test_coercion_assignment_timedelta(self, val, unit):
scalar = np.timedelta64(val, unit)
# Unlike datetime64, timedelta allows the unsafe cast:
np.array(scalar, dtype="S6")
cast = np.array(scalar).astype("S6")
ass = np.ones((), dtype="S6")
ass[()] = scalar
expected = scalar.astype("S")[:6]
assert cast[()] == expected
assert ass[()] == expected
class TestNested:
def test_nested_simple(self):
initial = [1.2]
nested = initial
for i in range(np.MAXDIMS - 1):
nested = [nested]
arr = np.array(nested, dtype="float64")
assert arr.shape == (1,) * np.MAXDIMS
with pytest.raises(ValueError):
np.array([nested], dtype="float64")
# We discover object automatically at this time:
with assert_warns(np.VisibleDeprecationWarning):
arr = np.array([nested])
assert arr.dtype == np.dtype("O")
assert arr.shape == (1,) * np.MAXDIMS
assert arr.item() is initial
def test_pathological_self_containing(self):
# Test that this also works for two nested sequences
l = []
l.append(l)
arr = np.array([l, l, l], dtype=object)
assert arr.shape == (3,) + (1,) * (np.MAXDIMS - 1)
# Also check a ragged case:
arr = np.array([l, [None], l], dtype=object)
assert arr.shape == (3, 1)
@pytest.mark.parametrize("arraylike", arraylikes())
def test_nested_arraylikes(self, arraylike):
# We try storing an array like into an array, but the array-like
# will have too many dimensions. This means the shape discovery
# decides that the array-like must be treated as an object (a special
# case of ragged discovery). The result will be an array with one
# dimension less than the maximum dimensions, and the array being
# assigned to it (which does work for object or if `float(arraylike)`
# works).
initial = arraylike(np.ones((1, 1)))
nested = initial
for i in range(np.MAXDIMS - 1):
nested = [nested]
with pytest.warns(DeprecationWarning):
# It will refuse to assign the array into
np.array(nested, dtype="float64")
# If this is object, we end up assigning a (1, 1) array into (1,)
# (due to running out of dimensions), this is currently supported but
# a special case which is not ideal.
arr = np.array(nested, dtype=object)
assert arr.shape == (1,) * np.MAXDIMS
assert arr.item() == np.array(initial).item()
@pytest.mark.parametrize("arraylike", arraylikes())
def test_uneven_depth_ragged(self, arraylike):
arr = np.arange(4).reshape((2, 2))
arr = arraylike(arr)
# Array is ragged in the second dimension already:
out = np.array([arr, [arr]], dtype=object)
assert out.shape == (2,)
assert out[0] is arr
assert type(out[1]) is list
# Array is ragged in the third dimension:
with pytest.raises(ValueError):
# This is a broadcast error during assignment, because
# the array shape would be (2, 2, 2) but `arr[0, 0] = arr` fails.
np.array([arr, [arr, arr]], dtype=object)
def test_empty_sequence(self):
arr = np.array([[], [1], [[1]]], dtype=object)
assert arr.shape == (3,)
# The empty sequence stops further dimension discovery, so the
# result shape will be (0,) which leads to an error during:
with pytest.raises(ValueError):
np.array([[], np.empty((0, 1))], dtype=object)
def test_array_of_different_depths(self):
# When multiple arrays (or array-likes) are included in a
# sequences and have different depth, we currently discover
# as many dimensions as they share. (see also gh-17224)
arr = np.zeros((3, 2))
mismatch_first_dim = np.zeros((1, 2))
mismatch_second_dim = np.zeros((3, 3))
dtype, shape = _discover_array_parameters(
[arr, mismatch_second_dim], dtype=np.dtype("O"))
assert shape == (2, 3)
dtype, shape = _discover_array_parameters(
[arr, mismatch_first_dim], dtype=np.dtype("O"))
assert shape == (2,)
# The second case is currently supported because the arrays
# can be stored as objects:
res = np.asarray([arr, mismatch_first_dim], dtype=np.dtype("O"))
assert res[0] is arr
assert res[1] is mismatch_first_dim
class TestBadSequences:
# These are tests for bad objects passed into `np.array`, in general
# these have undefined behaviour. In the old code they partially worked
# when now they will fail. We could (and maybe should) create a copy
# of all sequences to be safe against bad-actors.
def test_growing_list(self):
# List to coerce, `mylist` will append to it during coercion
obj = []
class mylist(list):
def __len__(self):
obj.append([1, 2])
return super().__len__()
obj.append(mylist([1, 2]))
with pytest.raises(RuntimeError):
np.array(obj)
# Note: We do not test a shrinking list. These do very evil things
# and the only way to fix them would be to copy all sequences.
# (which may be a real option in the future).
def test_mutated_list(self):
# List to coerce, `mylist` will mutate the first element
obj = []
class mylist(list):
def __len__(self):
obj[0] = [2, 3] # replace with a different list.
return super().__len__()
obj.append([2, 3])
obj.append(mylist([1, 2]))
with pytest.raises(RuntimeError):
np.array(obj)
def test_replace_0d_array(self):
# List to coerce, `mylist` will mutate the first element
obj = []
class baditem:
def __len__(self):
obj[0][0] = 2 # replace with a different list.
raise ValueError("not actually a sequence!")
def __getitem__(self):
pass
# Runs into a corner case in the new code, the `array(2)` is cached
# so replacing it invalidates the cache.
obj.append([np.array(2), baditem()])
with pytest.raises(RuntimeError):
np.array(obj)
class TestArrayLikes:
@pytest.mark.parametrize("arraylike", arraylikes())
def test_0d_object_special_case(self, arraylike):
arr = np.array(0.)
obj = arraylike(arr)
# A single array-like is always converted:
res = np.array(obj, dtype=object)
assert_array_equal(arr, res)
# But a single 0-D nested array-like never:
res = np.array([obj], dtype=object)
assert res[0] is obj
def test_0d_generic_special_case(self):
class ArraySubclass(np.ndarray):
def __float__(self):
raise TypeError("e.g. quantities raise on this")
arr = np.array(0.)
obj = arr.view(ArraySubclass)
res = np.array(obj)
# The subclass is simply cast:
assert_array_equal(arr, res)
# If the 0-D array-like is included, __float__ is currently
# guaranteed to be used. We may want to change that, quantities
# and masked arrays half make use of this.
with pytest.raises(TypeError):
np.array([obj])
# The same holds for memoryview:
obj = memoryview(arr)
res = np.array(obj)
assert_array_equal(arr, res)
with pytest.raises(ValueError):
# The error type does not matter much here.
np.array([obj])
def test_arraylike_classes(self):
# The classes of array-likes should generally be acceptable to be
# stored inside a numpy (object) array. This tests all of the
# special attributes (since all are checked during coercion).
arr = np.array(np.int64)
assert arr[()] is np.int64
arr = np.array([np.int64])
assert arr[0] is np.int64
# This also works for properties/unbound methods:
class ArrayLike:
@property
def __array_interface__(self):
pass
@property
def __array_struct__(self):
pass
def __array__(self):
pass
arr = np.array(ArrayLike)
assert arr[()] is ArrayLike
arr = np.array([ArrayLike])
assert arr[0] is ArrayLike
@pytest.mark.skipif(
np.dtype(np.intp).itemsize < 8, reason="Needs 64bit platform")
def test_too_large_array_error_paths(self):
"""Test the error paths, including for memory leaks"""
arr = np.array(0, dtype="uint8")
# Guarantees that a contiguous copy won't work:
arr = np.broadcast_to(arr, 2**62)
for i in range(5):
# repeat, to ensure caching cannot have an effect:
with pytest.raises(MemoryError):
np.array(arr)
with pytest.raises(MemoryError):
np.array([arr])
@pytest.mark.parametrize("attribute",
["__array_interface__", "__array__", "__array_struct__"])
@pytest.mark.parametrize("error", [RecursionError, MemoryError])
def test_bad_array_like_attributes(self, attribute, error):
# RecursionError and MemoryError are considered fatal. All errors
# (except AttributeError) should probably be raised in the future,
# but shapely made use of it, so it will require a deprecation.
class BadInterface:
def __getattr__(self, attr):
if attr == attribute:
raise error
super().__getattr__(attr)
with pytest.raises(error):
np.array(BadInterface())
@pytest.mark.parametrize("error", [RecursionError, MemoryError])
def test_bad_array_like_bad_length(self, error):
# RecursionError and MemoryError are considered "critical" in
# sequences. We could expand this more generally though. (NumPy 1.20)
class BadSequence:
def __len__(self):
raise error
def __getitem__(self):
# must have getitem to be a Sequence
return 1
with pytest.raises(error):
np.array(BadSequence())
This discrepency should be resolved, either by relaxing the
cast, or by deprecating the first part.
due to being handled by the string DType and not be casting
the explicit cast fails:
will have too many dimensions. This means the shape discovery
decides that the array-like must be treated as an object (a special
case of ragged discovery). The result will be an array with one
dimension less than the maximum dimensions, and the array being
assigned to it (which does work for object or if
float(arraylike)
works).
(due to running out of dimensions), this is currently supported but
a special case which is not ideal.
the array shape would be (2, 2, 2) but
arr[0, 0] = arr
fails.result shape will be (0,) which leads to an error during:
sequences and have different depth, we currently discover
as many dimensions as they share. (see also gh-17224)
can be stored as objects:
these have undefined behaviour. In the old code they partially worked
when now they will fail. We could (and maybe should) create a copy
of all sequences to be safe against bad-actors.
and the only way to fix them would be to copy all sequences.
(which may be a real option in the future).
so replacing it invalidates the cache.
guaranteed to be used. We may want to change that, quantities
and masked arrays half make use of this.
stored inside a numpy (object) array. This tests all of the
special attributes (since all are checked during coercion).
(except AttributeError) should probably be raised in the future,
but shapely made use of it, so it will require a deprecation.
sequences. We could expand this more generally though. (NumPy 1.20)
https://github.com/freelancing-solutions/gcp-database-as-a-service-stock-markets/blob/62db596398a1b8786c1efd15501cac40967ef33f/venv/Lib/site-packages/numpy/core/tests/test_array_coercion.py#L432
9e4873bc7a6de3a39cd38f4e452b0a363d2a9d2a