Optional: type (one of c("regression", "classification"), default is NULL or regression?
[ ] Fix: Right now, type is the above array, so regression and classification
This should either be regression or NULL
Optional: name , default is as.name(deparse(substitute(data), 20)[[1]])
[x] Implement printer for Dataset
[x] Implement generic access [ for Dataset
[.Dataset
[x] Implement metainfo() generic
Should be of type DatasetInfo
metainfo.Dataset
Description
Different learning algorithms use datasets in different formats (e.g. matrix or data.frame) and require different ways of specifying the response / target / outcome data (e.g. through a formula, or by having a distinct label or y argument).
The data, and which part of it should be predicted, is often closely linked.
We will therefore collect this information in one object, which we call Dataset.
Dataset() should have arguments data and target, as well as an optional argument type (one of "regression", "classification") and an optional argument "name", defaulting to as.name(deparse(substitute(data), 20)[[1]]).
Tasks
Dataset
class generatordata
target
type
(one ofc("regression", "classification")
, default is NULL or regression?name
, default isas.name(deparse(substitute(data), 20)[[1]])
Dataset
[
forDataset
[.Dataset
metainfo()
genericDatasetInfo
metainfo.Dataset
Description
Different learning algorithms use datasets in different formats (e.g.
matrix
ordata.frame
) and require different ways of specifying the response / target / outcome data (e.g. through aformula
, or by having a distinctlabel
ory
argument).The data, and which part of it should be predicted, is often closely linked. We will therefore collect this information in one object, which we call
Dataset
.Dataset()
should have argumentsdata
andtarget
, as well as an optional argumenttype
(one of"regression"
,"classification"
) and an optional argument"name"
, defaulting toas.name(deparse(substitute(data), 20)[[1]])
.