Open zhoushiwei opened 6 months ago
Hi, I just check this command and find it works well on my machine. Please check following information. Result: Parameters: Checkpoint: https://drive.google.com/file/d/1KKmTsEx-AAF_xVVhsxro16Vs-9ERpylM/view?usp=drive_link
The whole environment:
Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
absl-py 2.0.0 pypi_0 pypi
accelerate 0.25.0 pypi_0 pypi
addict 2.4.0 pypi_0 pypi
aiofiles 23.2.1 pypi_0 pypi
aiohttp 3.9.1 pypi_0 pypi
aiosignal 1.3.1 pypi_0 pypi
annotated-types 0.6.0 pypi_0 pypi
ansi2html 1.9.1 pypi_0 pypi
antlr4-python3-runtime 4.9.3 pypi_0 pypi
anyio 3.7.1 pypi_0 pypi
asttokens 2.4.1 pypi_0 pypi
async-timeout 4.0.3 pypi_0 pypi
attrs 23.1.0 pypi_0 pypi
blas 1.0 mkl
blessed 1.20.0 pypi_0 pypi
blinker 1.7.0 pypi_0 pypi
brotli-python 1.0.9 py39h6a678d5_7
bzip2 1.0.8 h7b6447c_0
ca-certificates 2023.11.17 hbcca054_0 conda-forge
cachetools 5.3.2 pypi_0 pypi
carvekit-colab 4.1.0 pypi_0 pypi
certifi 2023.11.17 py39h06a4308_0
cffi 1.16.0 py39h5eee18b_0
charset-normalizer 2.0.4 pyhd3eb1b0_0
click 8.1.7 pypi_0 pypi
colorama 0.4.6 pyhd8ed1ab_0 conda-forge
comm 0.2.0 pypi_0 pypi
configargparse 1.7 pypi_0 pypi
contourpy 1.2.0 pypi_0 pypi
cryptography 41.0.7 py39hdda0065_0
cuda 11.6.1 0 nvidia
cuda-cccl 11.6.55 hf6102b2_0 nvidia
cuda-command-line-tools 11.6.2 0 nvidia
cuda-compiler 11.6.2 0 nvidia
cuda-cudart 11.6.55 he381448_0 nvidia
cuda-cudart-dev 11.6.55 h42ad0f4_0 nvidia
cuda-cuobjdump 11.6.124 h2eeebcb_0 nvidia
cuda-cupti 11.6.124 h86345e5_0 nvidia
cuda-cuxxfilt 11.6.124 hecbf4f6_0 nvidia
cuda-driver-dev 11.6.55 0 nvidia
cuda-gdb 12.3.101 0 nvidia
cuda-libraries 11.6.1 0 nvidia
cuda-libraries-dev 11.6.1 0 nvidia
cuda-memcheck 11.8.86 0 nvidia
cuda-nsight 12.3.101 0 nvidia
cuda-nsight-compute 12.3.1 0 nvidia
cuda-nvcc 11.6.124 hbba6d2d_0 nvidia
cuda-nvdisasm 12.3.101 0 nvidia
cuda-nvml-dev 11.6.55 haa9ef22_0 nvidia
cuda-nvprof 12.3.101 0 nvidia
cuda-nvprune 11.6.124 he22ec0a_0 nvidia
cuda-nvrtc 11.6.124 h020bade_0 nvidia
cuda-nvrtc-dev 11.6.124 h249d397_0 nvidia
cuda-nvtx 11.6.124 h0630a44_0 nvidia
cuda-nvvp 12.3.101 0 nvidia
cuda-runtime 11.6.1 0 nvidia
cuda-samples 11.6.101 h8efea70_0 nvidia
cuda-sanitizer-api 12.3.101 0 nvidia
cuda-toolkit 11.6.1 0 nvidia
cuda-tools 11.6.1 0 nvidia
cuda-visual-tools 11.6.1 0 nvidia
cycler 0.12.1 pypi_0 pypi
dash 2.14.2 pypi_0 pypi
dash-core-components 2.0.0 pypi_0 pypi
dash-html-components 2.0.0 pypi_0 pypi
dash-table 5.0.0 pypi_0 pypi
decorator 5.1.1 pypi_0 pypi
diffusers 0.20.0 pypi_0 pypi
einops 0.7.0 pypi_0 pypi
exceptiongroup 1.2.0 pypi_0 pypi
executing 2.0.1 pypi_0 pypi
fastapi 0.105.0 pypi_0 pypi
fastjsonschema 2.19.0 pypi_0 pypi
ffmpeg 4.3 hf484d3e_0 pytorch
filelock 3.13.1 pypi_0 pypi
flask 3.0.0 pypi_0 pypi
fonttools 4.46.0 pypi_0 pypi
freetype 2.12.1 h4a9f257_0
freqencoder 0.0.0 pypi_0 pypi
frozenlist 1.4.1 pypi_0 pypi
fsspec 2023.12.2 pypi_0 pypi
fvcore 0.1.5.post20221221 pyhd8ed1ab_0 conda-forge
gds-tools 1.8.1.2 0 nvidia
giflib 5.2.1 h5eee18b_3
gmp 6.2.1 h295c915_3
gnutls 3.6.15 he1e5248_0
google-auth 2.25.2 pypi_0 pypi
google-auth-oauthlib 1.2.0 pypi_0 pypi
gpustat 1.1.1 pypi_0 pypi
gridencoder 0.0.0 pypi_0 pypi
grpcio 1.60.0 pypi_0 pypi
h11 0.14.0 pypi_0 pypi
huggingface-hub 0.19.4 pypi_0 pypi
idna 3.4 py39h06a4308_0
imageio 2.33.1 pypi_0 pypi
imageio-ffmpeg 0.4.9 pypi_0 pypi
importlib-metadata 7.0.0 pypi_0 pypi
importlib-resources 6.1.1 pypi_0 pypi
intel-openmp 2023.1.0 hdb19cb5_46306
iopath 0.1.9 py39 iopath
ipython 8.18.1 pypi_0 pypi
ipywidgets 8.1.1 pypi_0 pypi
itsdangerous 2.1.2 pypi_0 pypi
jedi 0.19.1 pypi_0 pypi
jinja2 3.1.2 pypi_0 pypi
joblib 1.3.2 pypi_0 pypi
jpeg 9e h5eee18b_1
jsonschema 4.20.0 pypi_0 pypi
jsonschema-specifications 2023.11.2 pypi_0 pypi
jupyter-core 5.5.0 pypi_0 pypi
jupyterlab-widgets 3.0.9 pypi_0 pypi
kiwisolver 1.4.5 pypi_0 pypi
kornia 0.7.0 pypi_0 pypi
lame 3.100 h7b6447c_0
lcms2 2.12 h3be6417_0
ld_impl_linux-64 2.38 h1181459_1
lerc 3.0 h295c915_0
libcublas 11.9.2.110 h5e84587_0 nvidia
libcublas-dev 11.9.2.110 h5c901ab_0 nvidia
libcufft 10.7.1.112 hf425ae0_0 nvidia
libcufft-dev 10.7.1.112 ha5ce4c0_0 nvidia
libcufile 1.8.1.2 0 nvidia
libcufile-dev 1.8.1.2 0 nvidia
libcurand 10.3.4.101 0 nvidia
libcurand-dev 10.3.4.101 0 nvidia
libcusolver 11.3.4.124 h33c3c4e_0 nvidia
libcusparse 11.7.2.124 h7538f96_0 nvidia
libcusparse-dev 11.7.2.124 hbbe9722_0 nvidia
libdeflate 1.17 h5eee18b_1
libffi 3.4.4 h6a678d5_0
libgcc-ng 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libiconv 1.16 h7f8727e_2
libidn2 2.3.4 h5eee18b_0
libnpp 11.6.3.124 hd2722f0_0 nvidia
libnpp-dev 11.6.3.124 h3c42840_0 nvidia
libnvjpeg 11.6.2.124 hd473ad6_0 nvidia
libnvjpeg-dev 11.6.2.124 hb5906b9_0 nvidia
libpng 1.6.39 h5eee18b_0
libstdcxx-ng 11.2.0 h1234567_1
libtasn1 4.19.0 h5eee18b_0
libtiff 4.5.1 h6a678d5_0
libunistring 0.9.10 h27cfd23_0
libwebp 1.3.2 h11a3e52_0
libwebp-base 1.3.2 h5eee18b_0
lightning-utilities 0.10.0 pypi_0 pypi
loguru 0.7.2 pypi_0 pypi
lz4-c 1.9.4 h6a678d5_0
markdown 3.5.1 pypi_0 pypi
markdown-it-py 3.0.0 pypi_0 pypi
markupsafe 2.1.3 pypi_0 pypi
matplotlib 3.8.2 pypi_0 pypi
matplotlib-inline 0.1.6 pypi_0 pypi
mdurl 0.1.2 pypi_0 pypi
mkl 2023.1.0 h213fc3f_46344
mkl-service 2.4.0 py39h5eee18b_1
mkl_fft 1.3.8 py39h5eee18b_0
mkl_random 1.2.4 py39hdb19cb5_0
multidict 6.0.4 pypi_0 pypi
nbformat 5.7.0 pypi_0 pypi
ncurses 6.4 h6a678d5_0
nest-asyncio 1.5.8 pypi_0 pypi
nettle 3.7.3 hbbd107a_1
ninja 1.11.1.1 pypi_0 pypi
nsight-compute 2023.3.1.1 0 nvidia
numpy 1.26.2 py39h5f9d8c6_0
numpy-base 1.26.2 py39hb5e798b_0
nvdiffrast 0.3.1 pypi_0 pypi
nvidia-ml-py 12.535.133 pypi_0 pypi
oauthlib 3.2.2 pypi_0 pypi
omegaconf 2.3.0 pypi_0 pypi
open3d 0.17.0 pypi_0 pypi
opencv-python 4.8.1.78 pypi_0 pypi
openh264 2.1.1 h4ff587b_0
openjpeg 2.4.0 h3ad879b_0
openssl 3.0.12 h7f8727e_0
packaging 23.2 pypi_0 pypi
pandas 2.1.4 pypi_0 pypi
parso 0.8.3 pypi_0 pypi
pexpect 4.9.0 pypi_0 pypi
pillow 10.0.1 py39ha6cbd5a_0
pip 23.3.1 py39h06a4308_0
platformdirs 4.1.0 pypi_0 pypi
plotly 5.18.0 pypi_0 pypi
portalocker 2.8.2 py39hf3d152e_1 conda-forge
prompt-toolkit 3.0.43 pypi_0 pypi
protobuf 4.23.4 pypi_0 pypi
psutil 5.9.7 pypi_0 pypi
ptyprocess 0.7.0 pypi_0 pypi
pure-eval 0.2.2 pypi_0 pypi
pyasn1 0.5.1 pypi_0 pypi
pyasn1-modules 0.3.0 pypi_0 pypi
pycparser 2.21 pyhd3eb1b0_0
pydantic 2.5.2 pypi_0 pypi
pydantic-core 2.14.5 pypi_0 pypi
pygments 2.17.2 pypi_0 pypi
pymcubes 0.1.4 pypi_0 pypi
pymeshlab 2023.12 pypi_0 pypi
pyopenssl 23.2.0 py39h06a4308_0
pyparsing 3.1.1 pypi_0 pypi
pyquaternion 0.9.9 pypi_0 pypi
pysocks 1.7.1 py39h06a4308_0
python 3.9.18 h955ad1f_0
python-dateutil 2.8.2 pypi_0 pypi
python-multipart 0.0.6 pypi_0 pypi
python_abi 3.9 2_cp39 conda-forge
pytorch 1.13.0 py3.9_cuda11.6_cudnn8.3.2_0 pytorch
pytorch-cuda 11.6 h867d48c_1 pytorch
pytorch-lightning 2.1.2 pypi_0 pypi
pytorch-mutex 1.0 cuda pytorch
pytorch3d 0.7.5 py39_cu116_pyt1130 pytorch3d
pytz 2023.3.post1 pypi_0 pypi
pyyaml 6.0 py39hb9d737c_4 conda-forge
raymarching 0.0.0 pypi_0 pypi
readline 8.2 h5eee18b_0
referencing 0.32.0 pypi_0 pypi
regex 2023.10.3 pypi_0 pypi
requests 2.31.0 py39h06a4308_0
requests-oauthlib 1.3.1 pypi_0 pypi
retrying 1.3.4 pypi_0 pypi
rich 13.7.0 pypi_0 pypi
rpds-py 0.15.2 pypi_0 pypi
rsa 4.9 pypi_0 pypi
safetensors 0.4.1 pypi_0 pypi
scikit-learn 1.3.2 pypi_0 pypi
scipy 1.11.4 pypi_0 pypi
setuptools 68.2.2 py39h06a4308_0
shencoder 0.0.0 pypi_0 pypi
six 1.16.0 pypi_0 pypi
sniffio 1.3.0 pypi_0 pypi
sqlite 3.41.2 h5eee18b_0
stack-data 0.6.3 pypi_0 pypi
starlette 0.27.0 pypi_0 pypi
tabulate 0.9.0 pyhd8ed1ab_1 conda-forge
taming-transformers-rom1504 0.0.6 pypi_0 pypi
tbb 2021.8.0 hdb19cb5_0
tenacity 8.2.3 pypi_0 pypi
tensorboard 2.15.1 pypi_0 pypi
tensorboard-data-server 0.7.2 pypi_0 pypi
tensorboardx 2.6.2.2 pypi_0 pypi
termcolor 2.3.0 pyhd8ed1ab_0 conda-forge
threadpoolctl 3.2.0 pypi_0 pypi
tk 8.6.12 h1ccaba5_0
tokenizers 0.15.0 pypi_0 pypi
torch-ema 0.3 pypi_0 pypi
torchmetrics 1.2.1 pypi_0 pypi
torchvision 0.14.0 py39_cu116 pytorch
tqdm 4.66.1 pyhd8ed1ab_0 conda-forge
traitlets 5.14.0 pypi_0 pypi
transformers 4.36.1 pypi_0 pypi
trimesh 4.0.5 pypi_0 pypi
triton 2.1.0 pypi_0 pypi
typing-extensions 4.9.0 pypi_0 pypi
tzdata 2023.3 pypi_0 pypi
urllib3 1.26.18 py39h06a4308_0
uvicorn 0.24.0.post1 pypi_0 pypi
wcwidth 0.2.12 pypi_0 pypi
werkzeug 3.0.1 pypi_0 pypi
wheel 0.41.2 py39h06a4308_0
widgetsnbextension 4.0.9 pypi_0 pypi
xatlas 0.0.8 pypi_0 pypi
xformers 0.0.24+042abc8.d20231218 pypi_0 pypi
xz 5.4.5 h5eee18b_0
yacs 0.1.8 pyhd8ed1ab_0 conda-forge
yaml 0.2.5 h7f98852_2 conda-forge
yarl 1.9.4 pypi_0 pypi
zipp 3.17.0 pypi_0 pypi
zlib 1.2.13 h5eee18b_0
zstd 1.5.5 hc292b87_0
It looks like the configuration is the same as yours, I didn't change anything in my code, the only thing that's different is that my sd models are downloaded locally and then loaded because of network problems, I don't know what's wrong.
OK I know what happened. There may be some bug with SDXL-1.0. I only test SDXL-0.9 because SDXL-1.0 was not available around 2023/8. Additionally, you can use "export HF_ENDPOINT=https://hf-mirror.com" to download models from huggingface without VPN.
OK I know what happened. There may be some bug with SDXL-1.0. I only test SDXL-0.9 because SDXL-1.0 was not available around 2023/8. Additionally, you can use "export HF_ENDPOINT=https://hf-mirror.com" to download models from huggingface without VPN.
While your result is just like a blue mask, my result is not textureless. I am not sure changing model can solve your problem.
OK I know what happened. There may be some bug with SDXL-1.0. I only test SDXL-0.9 because SDXL-1.0 was not available around 2023/8. Additionally, you can use "export HF_ENDPOINT=https://hf-mirror.com" to download models from huggingface without VPN.
SDXL-1.0 needs at least 7 epochs (2800 steps) to get a resonable texture:
OK I know what happened. There may be some bug with SDXL-1.0. I only test SDXL-0.9 because SDXL-1.0 was not available around 2023/8. Additionally, you can use "export HF_ENDPOINT=https://hf-mirror.com" to download models from huggingface without VPN.
SDXL-1.0 needs at least 7 epochs (2800 steps) to get a resonable texture:
Thanks for the reply, I'll try it out later, one question , why does the tone of these results look a bit strange to you (including the results in the paper) You mean it's ok to use sdxl 1.0, just need to raise the epochs to more than 7, right?
Hi,I'm trying to generate a texture with the guidance of dodging multiple images all the time, I see that the provided sample panda generates quite good results, but I use my own images and mesh to generate very poor results, is there any point to pay attention to here?
Hi,I'm trying to generate a texture with the guidance of dodging multiple images all the time, I see that the provided sample panda generates quite good results, but I use my own images and mesh to generate very poor results, is there any point to pay attention to here?
I'm not quite sure what 'guidance of dodging multiple images' refer to. In my experiments, the combination of reference image and SDXL SDS did not work well due to conflict gradients around the boundary of reference image. SD1.5 with reference image is just a implemented function which I did not study much. For failure of solely SDXL SDS, prompt and background have a large influence. For the text prompt, the success rate of all my used prompts is about 60-70% (same quality as the paper and suppl). For the background image, note that the background image used now is 'data/background.png'. I found that solid white background hurts the generation quality, so I have tried many images. I think a suitable background will help a lot.
Hi,I'm trying to generate a texture with the guidance of dodging multiple images all the time, I see that the provided sample panda generates quite good results, but I use my own images and mesh to generate very poor results, is there any point to pay attention to here?
I'm not quite sure what 'guidance of dodging multiple images' refer to. In my experiments, the combination of reference image and SDXL SDS did not work well due to conflict gradients around the boundary of reference image. SD1.5 with reference image is just a implemented function which I did not study much. For failure of solely SDXL SDS, prompt and background have a large influence. For the text prompt, the success rate of all my used prompts is about 60-70% (same quality as the paper and suppl). For the background image, note that the background image used now is 'data/background.png'. I found that solid white background hurts the generation quality, so I have tried many images. I think a suitable background will help a lot.
en ,I use the SD1.5 with reference image now,I mean the results run with your panda samples are ok, but my results with my own samples are very poor, is there a trick to it? There is another problem now it seems that it doesn't support multi-image input, I changed your code to make it support multiple images at the same time but it seems to be buggy
Regarding the issue with background images, I think it would be better to first separate the reference image from the background, then use a uniform background image for all. This way, the effect be better?
toy_terrier.obj.txt it seems the result is bad
Maybe misalignment exists between reference image and reference camera (the index-0 data? I forget, check nerf/provider.py), which may require some manual efforts. The strange color can be attributed to many factors. model, prompt, even focal range. In fact, I haven't known the effect of shuffle control so far...
Maybe misalignment exists between reference image and reference camera (the index-0 data? I forget, check nerf/provider.py), which may require some manual efforts. The strange color can be attributed to many factors. model, prompt, even focal range. In fact, I haven't known the effect of shuffle control so far...
Since there is a L2 loss between reference image and reference camera, there must be some errors. I also meet strange colors many times, if you don't mind some minor perturbations to the mesh,you can allow mesh changing with a very small learning rate, as shown in the middle of Figure 4 in the paper.
Thanks for reply. the reference image and reference camera Alignment is basically impossible with the reality of the task。I'm mainly trying to go through an image right to make a guide that generates texture maps related to the image. I don't know if you have any better strategies for improvement
I once considered this, but it was put on one side due to other projects. Using stylization controlnet is my first try. I just check meshy and find they also do not support this function. Good luck.
TextureDreamer: Image-guided Texture Synthesis through Geometry-aware Diffusion have u read this ,Can the methods in this section be incorporated into your project?
I once considered this, but it was put on one side due to other projects. Using stylization controlnet is my first try. I just check meshy and find they also do not support this function. Good luck.
Yes, currently there are basically no similar products on the market. I tried aligning the reference images absolutely, and it worked well for transferring the textures. Do you think this approach could be applied to 3D facial reconstruction?
I just run python main.py -O0 -O2 -O4 --pbr --guidance "controlnet" --text "A panda is dressed in armor, holding a spear in one hand and a shield in the other, realistic" --workspace panda/pbr --gpus "0" --mesh_path "data/panda_spear_shield.obj"
but the result is this