Open JoyHuYY1412 opened 2 years ago
+1. Would be really helpful to share an inference demo for SETR. I tried using SETR-Naive model (replaced the given PSPNet model in the demo) but end up with the following error (with trace).
File ~/projects/video-segcap/lib/SETR/mmseg/datasets/pipelines/test_time_aug.py:59, in MultiScaleFlipAug.__init__(self, transforms, img_scale, img_ratios, flip, flip_direction)
53 def __init__(self,
54 transforms,
55 img_scale,
56 img_ratios=None,
57 flip=False,
58 flip_direction='horizontal'):
---> 59 self.transforms = Compose(transforms)
60 if img_ratios is not None:
61 # mode 1: given a scale and a range of image ratio
62 img_ratios = img_ratios if isinstance(img_ratios,
63 list) else [img_ratios]
File ~/projects/video-segcap/lib/SETR/mmseg/datasets/pipelines/compose.py:22, in Compose.__init__(self, transforms)
20 for transform in transforms:
21 if isinstance(transform, dict):
---> 22 transform = build_from_cfg(transform, PIPELINES)
23 self.transforms.append(transform)
24 elif callable(transform):
File ~/install/miniconda3/envs/clip/lib/python3.8/site-packages/mmcv/utils/registry.py:171, in build_from_cfg(cfg, registry, default_args)
167 else:
168 raise TypeError(
169 f'type must be a str or valid type, but got {type(obj_type)}')
--> 171 return obj_cls(**args)
TypeError: __init__() got an unexpected keyword argument 'dataset'
The demo in your repo is written for pspnet, so could you share the demo for SETR?