fundamentalvision / Deformable-DETR

Deformable DETR: Deformable Transformers for End-to-End Object Detection.
Apache License 2.0
3.22k stars 520 forks source link

nvrtc: error: invalid value for --gpu-architecture (-arch) #196

Open Pandarenlql opened 1 year ago

Pandarenlql commented 1 year ago

Hi, Thanks for your excellent work! There are some questions that occur when I run these codes.

`cd ./models/ops sh ./make.sh

unit test (should see all checking is True)

python test.py`

My graphic card is RTX4090 and CUDA version is 11.6, pytorch is 1.12.0, cudatoolkit is 11.6

The following messages are the Traceback of the test.py:

`Traceback (most recent call last): File "test.py", line 24, in level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1])) RuntimeError:

define POS_INFINITY __int_as_float(0x7f800000)

define INFINITY POS_INFINITY

define NEG_INFINITY __int_as_float(0xff800000)

define NAN __int_as_float(0x7fffffff)

typedef long long int int64_t; typedef unsigned int uint32_t; typedef signed char int8_t; typedef unsigned char uint8_t; // NOTE: this MUST be "unsigned char"! "char" is equivalent to "signed char" typedef short int16_t; static_assert(sizeof(int64_t) == 8, "expected size does not match"); static_assert(sizeof(uint32_t) == 4, "expected size does not match"); static_assert(sizeof(int8_t) == 1, "expected size does not match"); constexpr int num_threads = 128; constexpr int thread_work_size = 4; // TODO: make template substitution once we decide where those vars live constexpr int block_work_size = thread_work_size * num_threads; //TODO use _assert_fail, because assert is disabled in non-debug builds

define ERROR_UNSUPPORTED_CAST assert(false);

namespace std {

using ::signbit; using ::isfinite; using ::isinf; using ::isnan;

using ::abs;

using ::acos; using ::acosf; using ::asin; using ::asinf; using ::atan; using ::atanf; using ::atan2; using ::atan2f; using ::ceil; using ::ceilf; using ::cos; using ::cosf; using ::cosh; using ::coshf;

using ::exp; using ::expf;

using ::fabs; using ::fabsf; using ::floor; using ::floorf;

using ::fmod; using ::fmodf;

using ::frexp; using ::frexpf; using ::ldexp; using ::ldexpf;

using ::log; using ::logf;

using ::log10; using ::log10f; using ::modf; using ::modff;

using ::pow; using ::powf;

using ::sin; using ::sinf; using ::sinh; using ::sinhf;

using ::sqrt; using ::sqrtf; using ::tan; using ::tanf;

using ::tanh; using ::tanhf;

using ::acosh; using ::acoshf; using ::asinh; using ::asinhf; using ::atanh; using ::atanhf; using ::cbrt; using ::cbrtf;

using ::copysign; using ::copysignf;

using ::erf; using ::erff; using ::erfc; using ::erfcf; using ::exp2; using ::exp2f; using ::expm1; using ::expm1f; using ::fdim; using ::fdimf; using ::fmaf; using ::fma; using ::fmax; using ::fmaxf; using ::fmin; using ::fminf; using ::hypot; using ::hypotf; using ::ilogb; using ::ilogbf; using ::lgamma; using ::lgammaf; using ::llrint; using ::llrintf; using ::llround; using ::llroundf; using ::log1p; using ::log1pf; using ::log2; using ::log2f; using ::logb; using ::logbf; using ::lrint; using ::lrintf; using ::lround; using ::lroundf;

using ::nan; using ::nanf;

using ::nearbyint; using ::nearbyintf; using ::nextafter; using ::nextafterf; using ::remainder; using ::remainderf; using ::remquo; using ::remquof; using ::rint; using ::rintf; using ::round; using ::roundf; using ::scalbln; using ::scalblnf; using ::scalbn; using ::scalbnf; using ::tgamma; using ::tgammaf; using ::trunc; using ::truncf;

} // namespace std

// NB: Order matters for this macro; it is relied upon in // _promoteTypesLookup and the serialization format. // Note, some types have ctype as void because we don't support them in codegen

define AT_FORALL_SCALAR_TYPES_WITHCOMPLEX() \

_(uint8t, Byte) / 0 / \ (int8t, Char) / 1 / \ (int16t, Short) / 2 / \ (int, Int) / 3 / \ _(int64t, Long) / 4 / \ (at::Half, Half) / 5 / \ (float, Float) / 6 / \ (double, Double) / 7 / \ (std::complex, ComplexHalf) / 8 / \ (std::complex, ComplexFloat) / 9 / \ (std::complex, ComplexDouble) / 10 / \ (bool, Bool) / 11 / \ (void, QInt8) / 12 / \ (void, QUInt8) / 13 / \ (void, QInt32) / 14 / \ (at::BFloat16, BFloat16) / 15 / \

define AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_EXCEPTQINT() \

_(uint8t, Byte) \ (int8t, Char) \ (int16t, Short) \ (int, Int) \ _(int64t, Long) \ (at::Half, Half) \ (float, Float) \ (double, Double) \ (std::complex, ComplexHalf) \ (std::complex, ComplexFloat) \ (std::complex, ComplexDouble) \ (bool, Bool) \ _(at::BFloat16, BFloat16)

enum class ScalarType : int8_t {

define DEFINE_ENUM(_1, n) n,

AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_ENUM)

undef DEFINE_ENUM

  Undefined,

NumOptions };

template <typename T, int size> struct Array { T data[size];

device T operator[](int i) const { return data[i]; } device T& operator[](int i) { return data[i]; } Array() = default; Array(const Array&) = default; Array& operator=(const Array&) = default; device Array(T x) { for (int i = 0; i < size; i++) { data[i] = x; } } };

template struct DivMod { T div; T mod;

device DivMod(T _div, T _mod) { div = _div; mod = _mod; } };

// struct IntDivider { IntDivider() = default;

device inline unsigned int div(unsigned int n) const { unsigned int t = __umulhi(n, m1); return (t + n) >> shift; }

device inline unsigned int mod(unsigned int n) const { return n - div(n) * divisor; }

device inline DivMod divmod(unsigned int n) const { unsigned int q = div(n); return DivMod(q, n - q * divisor); }

unsigned int divisor; // d above. unsigned int m1; // Magic number: m' above. unsigned int shift; // Shift amounts. };

template struct TrivialOffsetCalculator { // The offset for each argument. Wrapper around fixed-size array. // The offsets are in # of elements, not in bytes. Array<unsigned int, NARGS> get(unsigned int linear_idx) const { Array<unsigned int, NARGS> offsets;

pragma unroll

  for (int arg = 0; arg < NARGS; arg++) {
    offsets[arg] = linear_idx;
  }
  return offsets;
}

};

template struct OffsetCalculator { OffsetCalculator() = default; device forceinline Array<unsigned int, NARGS> get(unsigned int linear_idx) const { Array<unsigned int, NARGS> offsets;

pragma unroll

  for (int arg = 0; arg < NARGS; ++arg) {
  offsets[arg] = 0;
  }

  #pragma unroll
  for (int dim = 0; dim < 25; ++dim) {
  if (dim == dims) {
      break;
  }

  auto divmod = sizes_[dim].divmod(linear_idx);
  linear_idx = divmod.div;

  #pragma unroll
  for (int arg = 0; arg < NARGS; ++arg) {
      offsets[arg] += divmod.mod * strides_[dim][arg];
  }
  //printf("offset calc thread dim size stride offset %d %d %d %d %d %d %d %d\n",
  //threadIdx.x, dim, sizes_[dim].divisor, strides_[dim][0], offsets[0], linear_idx, divmod.div, divmod.mod);
  }
  return offsets;

}

int dims;
IntDivider sizes_[25];
// NOTE: this approach will not support nInputs == 0
unsigned int strides_[25][NARGS];

};

define C10_HOST_DEVICE host device

define C10_DEVICE device

template device forceinline T WARP_SHFL_DOWN(T value, unsigned int delta, int width = warpSize, unsigned int mask = 0xffffffff) { return __shfl_down_sync(mask, value, delta, width); }

if 0

template device forceinline std::complex WARP_SHFL_DOWN(std::complex value, unsigned int delta, int width = warpSize, unsigned int mask = 0xffffffff) { return std::complex( shfl_down_sync(mask, value.real(), delta, width), shfl_down_sync(mask, value.imag(), delta, width)); }

endif

// aligned vector generates vectorized load/store on CUDA template<typename scalar_t, int vec_size> struct alignas(sizeof(scalar_t) * vec_size) aligned_vector { scalar_t val[vec_size]; };

C10_HOST_DEVICE static void reduce_fraction(size_t &numerator, size_t &denominator) { // get GCD of num and denom using Euclid's algorithm. // Can replace this with std::gcd if we ever support c++17. size_t a = denominator; size_t b = numerator; while (b != 0) { a %= b; // swap(a,b) size_t tmp = a; a = b; b = tmp; }

// a is now the GCD
numerator /= a;
denominator /= a;

}

struct ReduceConfig { //has to match host-side ReduceConfig in the eager code static constexpr int BLOCK_X = 0; static constexpr int BLOCK_Y = 1; static constexpr int CTA = 2;

static constexpr int input_vec_size = 4; int element_size_bytes; int num_inputs; int num_outputs; int step_input = 1; int step_output = 1; int ctas_per_output = 1; int input_mult[3] = {0, 0, 0}; int output_mult[2] = {0, 0};

int block_width; int block_height; int num_threads;

bool vectorize_input = false; int output_vec_size = 1;

C10_HOST_DEVICE bool should_block_x_reduce() const { return input_mult[BLOCK_X] != 0; }

C10_HOST_DEVICE bool should_block_y_reduce() const { return input_mult[BLOCK_Y] != 0; }

C10_HOST_DEVICE bool should_global_reduce() const { return input_mult[CTA] != 0; }

C10_DEVICE bool should_store(int output_idx) const { return output_idx < num_outputs && (!should_block_x_reduce() || threadIdx.x == 0) && (!should_block_y_reduce() || threadIdx.y == 0); }

C10_DEVICE bool should_reduce_tail() const { return (!should_block_y_reduce() || threadIdx.y == 0) && (!should_global_reduce() || blockIdx.y == 0); }

C10_HOST_DEVICE int input_idx() const { int lane = threadIdx.x; int warp = threadIdx.y; int cta2 = blockIdx.y; return (lane input_mult[BLOCK_X] + warp input_mult[BLOCK_Y] + cta2 * input_mult[CTA]); }

template C10_HOST_DEVICE int output_idx() const { int lane = threadIdx.x; int warp = threadIdx.y; int cta1 = blockIdx.x; return (lane output_mult[BLOCK_X] + warp output_mult[BLOCK_Y] + cta1 step_output) output_vec_size; }

C10_DEVICE int shared_memory_offset(int offset) const { return threadIdx.x + (threadIdx.y + offset) * blockDim.x; }

C10_DEVICE int staging_memory_offset(int cta2) const { int offset = cta2 + blockIdx.x gridDim.y; if (!should_block_x_reduce()) { offset = threadIdx.x + offset blockDim.x; } return offset; }

};

//TODO this will need to be different for more generic reduction functions namespace reducer {

using scalar_t = int64_t; using arg_t = int64_t; using out_scalar_t = int64_t;

inline device arg_t combine(arg_t a, arg_t b) { return a * b; }

inline device out_scalar_t project(arg_t arg) { return (out_scalar_t) arg; }

inline device arg_t warp_shfl_down(arg_t arg, int offset) { return WARP_SHFL_DOWN(arg, offset); }

inline device arg_t translate_idx(arg_t acc, int64_t /idx/) { return acc; }

// wrap a normal reduction that ignores the index inline device arg_t reduce(arg_t acc, arg_t val, int64_t idx) { return combine(acc, val); } }

struct ReduceJitOp { using scalar_t = int64_t; using arg_t = int64_t; using out_scalar_t = int64_t;

using InputCalculator = OffsetCalculator<1>; using OutputCalculator = OffsetCalculator<2>;

// static constexpr bool can_accumulate_in_output = // std::is_convertible<arg_t, out_scalar_t>::value // && std::is_convertible<out_scalar_t, arg_t>::value;

static constexpr int input_vec_size = ReduceConfig::input_vec_size;

arg_t ident; ReduceConfig config; InputCalculator input_calc; OutputCalculator output_calc; const void src; const char dst[2]; //it accepts at most two destinations // acc_buf used for accumulation among sub Tensor Iterator when accumulation on // output is not permissible void acc_buf; // cta_buf used for accumulation between blocks during global reduction void cta_buf; int* semaphores; int64_t base_idx; bool accumulate; bool final_output; int noutputs;

C10_DEVICE void run() const { extern shared char shared_memory[]; uint32_t output_idx = config.output_idx<1>(); uint32_t input_idx = config.input_idx(); auto base_offsets1 = output_calc.get(output_idx)[1];

using arg_vec_t = Array<arg_t, 1>;
arg_vec_t value;

if (output_idx < config.num_outputs && input_idx < config.num_inputs) {
  const scalar_t* input_slice = (const scalar_t*)((const char*)src + base_offsets1);

  value = thread_reduce<1>(input_slice);
}

if (config.should_block_y_reduce()) {
  value = block_y_reduce<1>(value, shared_memory);
}
if (config.should_block_x_reduce()) {
  value = block_x_reduce<1>(value, shared_memory);
}

using out_ptr_vec_t = Array<out_scalar_t*, 1>;
using offset_vec_t = Array<uint32_t, 1>;
offset_vec_t base_offsets;
out_ptr_vec_t out;

#pragma unroll
for (int i = 0; i < 1; i++) {
  base_offsets[i] = output_calc.get(output_idx + i)[0];
  out[i] = (out_scalar_t*)((char*)dst[0] + base_offsets[i]);
}

arg_vec_t* acc = nullptr;
if (acc_buf != nullptr) {
  size_t numerator = sizeof(arg_t);
  size_t denominator = sizeof(out_scalar_t);
  reduce_fraction(numerator, denominator);
  acc = (arg_vec_t*)((char*)acc_buf + (base_offsets[0] * numerator / denominator));
}

if (config.should_global_reduce()) {
  value = global_reduce<1>(value, acc, shared_memory);
} else if (config.should_store(output_idx)) {
  if (accumulate) {
    #pragma unroll
    for (int i = 0; i < 1; i++) {
      value[i] = reducer::translate_idx(value[i], base_idx);
    }
  }

  if (acc == nullptr) {
    if (accumulate) {
      value = accumulate_in_output<1>(out, value);
    }
    if (final_output) {
      set_results_to_output<1>(value, base_offsets);
    } else {
      #pragma unroll
      for (int i = 0; i < 1; i++) {
        *(out[i]) = get_accumulated_output(out[i], value[i]);
      }
    }
  } else {
    if (accumulate) {
      #pragma unroll
      for (int i = 0; i < 1; i++) {
        value[i] = reducer::combine((*acc)[i], value[i]);
      }
    }
    if (final_output) {
      set_results_to_output<1>(value, base_offsets);
    } else {
      *acc = value;
    }
  }
}

}

template C10_DEVICE Array<arg_t, output_vec_size> thread_reduce(const scalar_t data) const { if (config.vectorize_input) { assert(output_vec_size == 1); // reduce at the header of input_slice where memory is not aligned, // so that thread_reduce will have an aligned memory to work on. return {input_vectorized_thread_reduce_impl(data)}; } else { uint32_t element_stride = inputcalc.strides[0][0] / sizeof(scalar_t); bool is_contiguous = (input_calc.dims == 1 && element_stride == 1); if (is_contiguous) { return thread_reduce_impl(data, [](uint32_t idx) { return idx; }); } else if (input_calc.dims == 1) { return thread_reduce_impl(data, [&](uint32_t idx) { return idx element_stride; }); } else { return thread_reduce_impl(data, [&](uint32_t idx) { return input_calc.get(idx)[0] / sizeof(scalar_t); }); } } }

C10_DEVICE arg_t input_vectorized_thread_reduce_impl(const scalar_t* data) const { uint32_t end = config.num_inputs;

// Handle the head of input slice where data is not aligned
arg_t value = ident;
constexpr int align_bytes = alignof(aligned_vector<scalar_t, input_vec_size>);
constexpr int align_elements = align_bytes / sizeof(scalar_t);
int shift = ((int64_t)data) % align_bytes / sizeof(scalar_t);
if (shift > 0) {
  data -= shift;
  end += shift;
  if(threadIdx.x >= shift && threadIdx.x < align_elements && config.should_reduce_tail()){
    value = reducer::reduce(value, data[threadIdx.x], threadIdx.x - shift);
  }
  end -= align_elements;
  data += align_elements;
  shift = align_elements - shift;
}

// Do the vectorized reduction
using load_t = aligned_vector<scalar_t, input_vec_size>;

uint32_t idx = config.input_idx();
const uint32_t stride = config.step_input;

// Multiple accumulators to remove dependency between unrolled loops.
arg_t value_list[input_vec_size];
value_list[0] = value;

#pragma unroll
for (int i = 1; i < input_vec_size; i++) {
  value_list[i] = ident;
}

scalar_t values[input_vec_size];

load_t *values_vector = reinterpret_cast<load_t*>(&values[0]);

while (idx * input_vec_size + input_vec_size - 1 < end) {
  *values_vector = reinterpret_cast<const load_t*>(data)[idx];
  #pragma unroll
  for (uint32_t i = 0; i < input_vec_size; i++) {
    value_list[i] = reducer::reduce(value_list[i], values[i], shift + idx * input_vec_size + i);
  }
  idx += stride;
}

// tail
uint32_t tail_start = end - end % input_vec_size;
if (config.should_reduce_tail()) {
  int idx = tail_start + threadIdx.x;
  if (idx < end) {
    value_list[0] = reducer::reduce(value_list[0], data[idx], idx + shift);
  }
}

// combine accumulators
#pragma unroll
for (int i = 1; i < input_vec_size; i++) {
  value_list[0] = reducer::combine(value_list[0], value_list[i]);
}
return value_list[0];

}

template <int output_vec_size, typename offset_calc_t> C10_DEVICE Array<arg_t, output_vec_size> thread_reduce_impl(const scalart* data, offset_calc_t calc) const { uint32_t idx = config.input_idx(); const uint32_t end = config.num_inputs; const uint32_t stride = config.step_input; const int vt0=4;

using arg_vec_t = Array<arg_t, output_vec_size>;
using load_t = aligned_vector<scalar_t, output_vec_size>;
const load_t* data = reinterpret_cast<const load_t*>(data_);

// Multiple accumulators to remove dependency between unrolled loops.
arg_vec_t value_list[vt0];

#pragma unroll
for (int i = 0; i < vt0; i++) {
  #pragma unroll
  for (int j = 0; j < output_vec_size; j++) {
    value_list[i][j] = ident;
  }
}

load_t values[vt0];

while (idx + (vt0 - 1) * stride < end) {
  #pragma unroll
  for (uint32_t i = 0; i < vt0; i++) {
    values[i] = data[calc(idx + i * stride) / output_vec_size];
  }
  #pragma unroll
  for (uint32_t i = 0; i < vt0; i++) {
    #pragma unroll
    for (uint32_t j = 0; j < output_vec_size; j++) {
      value_list[i][j] = reducer::reduce(value_list[i][j], values[i].val[j], idx + i * stride);
    }
  }
  idx += stride * vt0;
}

// tail
int idx_ = idx;
#pragma unroll
for (uint32_t i = 0; i < vt0; i++) {
  if (idx >= end) {
    break;
  }
  values[i] = data[calc(idx) / output_vec_size];
  idx += stride;
}
idx = idx_;
#pragma unroll
for (uint32_t i = 0; i < vt0; i++) {
  if (idx >= end) {
    break;
  }
  #pragma unroll
  for (uint32_t j = 0; j < output_vec_size; j++) {
    value_list[i][j] = reducer::reduce(value_list[i][j], values[i].val[j], idx);
  }
  idx += stride;
}

// combine accumulators
#pragma unroll
for (int i = 1; i < vt0; i++) {
  #pragma unroll
  for (uint32_t j = 0; j < output_vec_size; j++) {
    value_list[0][j] = reducer::combine(value_list[0][j], value_list[i][j]);
  }
}
return value_list[0];

} template C10_DEVICE Array<arg_t, output_vec_size> block_x_reduce(Array<arg_t, output_vec_size> value, char shared_memory) const { using args_vec_t = Array<arg_t, output_vec_size>; int dim_x = blockDim.x; args_vec_t shared = (args_vec_t)shared_memory; if (dim_x > warpSize) { int address_base = threadIdx.x + threadIdx.yblockDim.x; shared[address_base] = value; for (int offset = dim_x/2; offset >= warpSize; offset >>= 1) { __syncthreads(); if (threadIdx.x < offset && threadIdx.x + offset < blockDim.x) { args_vec_t other = shared[address_base + offset];

pragma unroll

      for (int i = 0; i < output_vec_size; i++) {
        value[i] = reducer::combine(value[i], other[i]);
      }
      shared[address_base] = value;
    }
  }
  dim_x = warpSize;
}

__syncthreads();

for (int offset = 1; offset < dim_x; offset <<= 1) {
  #pragma unroll
  for (int i = 0; i < output_vec_size; i++) {
    arg_t other = reducer::warp_shfl_down(value[i], offset);
    value[i] = reducer::combine(value[i], other);
  }
}
return value;

}

template C10_DEVICE Array<arg_t, output_vec_size> block_y_reduce(Array<arg_t, output_vec_size> value, char shared_memory) const { using args_vec_t = Array<arg_t, output_vec_size>; args_vec_t shared = (args_vec_t*)shared_memory; shared[config.shared_memory_offset(0)] = value; for (int offset = blockDim.y / 2; offset > 0; offset >>= 1) { __syncthreads(); if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) { args_vec_t other = shared[config.shared_memory_offset(offset)];

pragma unroll

    for (int i = 0; i < output_vec_size; i++) {
      value[i] = reducer::combine(value[i], other[i]);
    }
    shared[config.shared_memory_offset(0)] = value;
  }
}
return value;

}

C10_DEVICE bool mark_block_finished() const { shared bool is_last_block_done_shared;

__syncthreads();
if (threadIdx.x == 0 && threadIdx.y == 0) {
  int prev_blocks_finished = atomicAdd(&semaphores[blockIdx.x], 1);
  is_last_block_done_shared = (prev_blocks_finished == gridDim.y - 1);
}

__syncthreads();

return is_last_block_done_shared;

}

template C10_DEVICE Array<arg_t, output_vec_size> accumulate_in_output( Array<out_scalar_t*, output_vec_size> out, Array<arg_t, output_vec_size> value ) const { Array<arg_t, output_vec_size> ret;

pragma unroll

for (int i = 0; i < output_vec_size; i++) {
  ret[i] = reducer::combine(*(out[i]), value[i]);
}
return ret;

}

C10_DEVICE out_scalar_t get_accumulated_output( out_scalar_t* out, arg_t value ) const { assert(!final_output); return (out_scalar_t)value; }

template C10_DEVICE void set_results(const T x, const uint32_t base_offset) const { assert(noutputs == 1); auto res = (out_scalar_t)((char)dst[0] + base_offset); *res = x; }

//TODO - multi-output reduction - we won't be able to use thrust::pair //just explicitly specify typed output reads/writes //Currently implemented for max of two outputs // template<class T1, class T2> // C10_DEVICE void set_results(const thrust::pair<T1, T2> x, const index_t base_offset) const { // if (noutputs >= 1) { // auto res0 = (T1)((char)dst[0] + base_offset); // res0 = x.first; // } // if (noutputs >= 2) { // // base offset is computed assuming element size being sizeof(T1), so we need to make a // // correction to obtain the correct base offset // auto res1 = (T2) ((char ) dst[1] + base_offset / sizeof(T1) sizeof(T2)); // *res1 = x.second; // } // }

template C10_DEVICE void set_results_to_output(Array<arg_t, output_vec_size> value, Array<uint32_t, output_vec_size> base_offset) const { assert(final_output);

pragma unroll

for (int i = 0; i < output_vec_size; i++) {
  set_results(reducer::project(value[i]), base_offset[i]);
}

}

template C10_DEVICE Array<arg_t, output_vec_size> global_reduce(Array<arg_t, output_vec_size> value, Array<arg_t, output_vec_size> acc, char shared_memory) const { using arg_vec_t = Array<arg_t, output_vec_size>; using out_ptr_vec_t = Array<out_scalar_t*, output_vec_size>; using offset_vec_t = Array<uint32_t, output_vec_size>;

arg_vec_t* reduce_buffer = (arg_vec_t*)cta_buf;
uint32_t output_idx = config.output_idx<output_vec_size>();
offset_vec_t base_offsets;
out_ptr_vec_t out;

#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
  base_offsets[i] = output_calc.get(output_idx + i)[0];
  out[i] = (out_scalar_t*)((char*)dst[0] + base_offsets[i]);
}

bool should_store = config.should_store(output_idx);
if (should_store) {
  uint32_t offset = config.staging_memory_offset(blockIdx.y);
  reduce_buffer[offset] = value;
}

__threadfence(); // make sure writes are globally visible
__syncthreads(); // if multiple warps in this block wrote to staging, make sure they're all done
bool is_last_block_done = mark_block_finished();

if (is_last_block_done) {
  value = ident;
  if (config.should_block_x_reduce()) {
    uint32_t input_offset = threadIdx.x + threadIdx.y * blockDim.x;
    uint32_t step = blockDim.x * blockDim.y;
    for (; input_offset < config.ctas_per_output; input_offset += step) {
      uint32_t idx = config.staging_memory_offset(input_offset);
      arg_vec_t next = reduce_buffer[idx];
      #pragma unroll
      for (int i = 0; i < output_vec_size; i++) {
        value[i] = reducer::combine(value[i], next[i]);
      }
    }
  } else {
    uint32_t input_offset = threadIdx.y;
    uint32_t step = blockDim.y;
    for (; input_offset < config.ctas_per_output; input_offset += step) {
      uint32_t idx = config.staging_memory_offset(input_offset);
      arg_vec_t next = reduce_buffer[idx];
      #pragma unroll
      for (int i = 0; i < output_vec_size; i++) {
        value[i] = reducer::combine(value[i], next[i]);
      }
    }
  }
  value = block_y_reduce(value, shared_memory);
  if (config.should_block_x_reduce()) {
    value = block_x_reduce<output_vec_size>(value, shared_memory);
  }
  if (should_store) {
    if (accumulate) {
      #pragma unroll
      for (int i = 0; i < output_vec_size; i++) {
        value[i] = reducer::translate_idx(value[i], base_idx);
      }
    }

    if (acc == nullptr) {
      if (accumulate) {
        value = accumulate_in_output<output_vec_size>(out, value);
      }
      if (final_output) {
        set_results_to_output<output_vec_size>(value, base_offsets);
      } else {
        #pragma unroll
        for (int i = 0; i < output_vec_size; i++) {
          *(out[i]) = get_accumulated_output(out[i], value[i]);
        }
      }
    } else {
      if (accumulate) {
        #pragma unroll
        for (int i = 0; i < output_vec_size; i++) {
          value[i] = reducer::combine((*acc)[i], value[i]);
        }
      }
      if (final_output) {
        set_results_to_output<output_vec_size>(value, base_offsets);
      } else {
        *acc = value;
      }
    }
  }
}

return value;

} };

extern "C" __launch_bounds(512, 4) global__ void reduction_prod_kernel(ReduceJitOp r){ r.run(); } nvrtc: error: invalid value for --gpu-architecture (-arch) `

rolsheng commented 1 year ago

I have met so many times for this nvrtc: error: invalid value for --gpu-architecture (-arch). And I think the error lies in tensor.prod ops, modify the 25 line in test.py (level_start_index = torch.cat((shapes.new_zeros((1, )), (shapes[:,0]*shapes[:,1]).cumsum(0)[:-1]))) . It works well!