fuscc-deep-path / sc_MTOP

sc-MTOP is an analysis framework based on deep learning and computational pathology. This framework aims to characterize the tumor ecosystem diversity at the single-cell level. This code provide 1) Hover-Net-based nuclear segmentation and classification; 2) Nuclear morphological and texture feature extraction; 3) Multi-level pairwise nuclear graph construction and spatial topological feature extraction.
26 stars 6 forks source link

示例数据 #1

Closed 464hee closed 1 year ago

464hee commented 1 year ago

你好,关于F3代码的示例数据,能否提供参考一下呢?
fun3('./data_example/COWH/COWH.json', './data_example/COWH/COWH.ndpi', './data_example', xml_path=None)

464hee commented 1 year ago

@CDPDisk

CDPDisk commented 1 year ago

抱歉回复比较迟。由于和医院方面的合作要求一些数据暂时无法公开,目前正在尝试提供体积较小的demo数据

464hee commented 1 year ago

没关系,我现在想知道关于提取到的特征的解释有吗?就是想知道每个特征背后代表哪些统计意义

CDPDisk commented 1 year ago

目前论文正在投稿,因此与疾病相关上的意义无法给出详细解释,欢迎关注后续论文的发表情况。数学上的意义和定义公式则可以根据特征名和调用的函数去相应包的文档里查找。