Closed sukerlove closed 8 years ago
Looks about right, but your reference style appears to be already a product of a style transfer operation in some other app on this image. Better choose original unaltered styles, train with --image_size 512
option and even then result may not always be plausible.
@6o6o thanks, i now try --image_size 512 I use command, but memory out
GPU gtx1080, memroy:32G
num traning images: 82783
82783 iterations, 2 epochs
/usr/local/lib/python2.7/dist-packages/chainer/cuda.py:87: UserWarning: cuDNN is not enabled.
Please reinstall chainer after you install cudnn
(see https://github.com/pfnet/chainer#installation).
'cuDNN is not enabled.\n'
epoch 0
(epoch 0) batch 0/82783... training loss is...255842176.0
Traceback (most recent call last):
File "train.py", line 133, in
You need to install cuDNN. It reduces memory usage significantly. After installing CUDA, download cuDNN here, place the necessary files to your CUDA installation dir and reinstall chainer.
@6o6o thanks
I had install cudnn before
ls -la /usr/local/cuda-8.0/lib64/ ...... -rw-r--r-- 1 root root 737516 8月 11 18:21 libcudart_static.a lrwxrwxrwx 1 root root 35 8月 20 13:38 libcudnn.so -> /usr/local/cuda/lib64/libcudnn.so.5 lrwxrwxrwx 1 root root 39 8月 16 14:28 libcudnn.so.4 -> /usr/local/cuda/lib64/libcudnn.so.4.0.7 -rwxr-xr-x 1 root root 61453024 8月 16 14:15 libcudnn.so.4.0.7 lrwxrwxrwx 1 root root 39 8月 16 10:38 libcudnn.so.5 -> /usr/local/cuda/lib64/libcudnn.so.5.1.5 -rwxr-xr-x 1 root root 79337624 8月 11 18:42 libcudnn.so.5.1.5 lrwxrwxrwx 1 root root 40 8月 16 11:08 libcudnn.so.7.0 -> /usr/local/cuda/lib64/libcudnn.so.7.0.64
and set path: declare -x CPATH="/usr/local/cuda-8.0/include:/home/gtx1080/:" declare -x LD_LIBRARY_PATH="/home/gtx1080/torch/install/lib:/usr/local/cuda-8.0/lib64:" declare -x LIBRARY_PATH="/home/gtx1080/torch/install/lib:/usr/local/cuda-8.0/lib64:"
Here is the original style image used to create the picture you provided
use source: https://github.com/yusuketomoto/chainer-fast-neuralstyle
I get http://msvocds.blob.core.windows.net/coco2014/train2014.zip unzip train2014.zip then
suker@suker:~/chainer-fast-neuralstyle$ python train.py -s rio.jpg -d ./train2014 -g 0 /usr/local/lib/python2.7/dist-packages/pkg_resources/init.py:1298: UserWarning: /home/gtx1080/.python-eggs is writable by group/others and vulnerable to attack when used with get_resource_filename. Consider a more secure location (set with .set_extraction_path or the PYTHON_EGG_CACHE environment variable). warnings.warn(msg, UserWarning) num traning images: 82783 82783 iterations, 2 epochs /usr/local/lib/python2.7/dist-packages/chainer-1.14.0-py2.7-linux-x86_64.egg/chainer/cuda.py:87: UserWarning: cuDNN is not enabled. Please reinstall chainer after you install cudnn (see https://github.com/pfnet/chainer#installation). 'cuDNN is not enabled.\n' epoch 0 (epoch 0) batch 0/82783... training loss is...235437792.0 (epoch 0) batch 1/82783... training loss is...329452736.0 (epoch 0) batch 2/82783... training loss is...154218272.0 (epoch 0) batch 3/82783... training loss is...63537960.0 (epoch 0) batch 4/82783... training loss is...58619268.0 (epoch 0) batch 5/82783... training loss is...55183628.0 (epoch 0) batch 6/82783... training loss is...54082024.0
is operate OK?
after more then 5 hours, the train finish.
the output rio_0.model rio_0.state
rio_1.model rio_1.state
rio.model rio.state
I use rio.model, to gen picture, it seems not ok, is any step i'm wrong?
rio-train.zip
rio.jpg rio.model rio-dst.jpg
thanks