Closed lgoettgens closed 1 year ago
Hmmm...
gap> SetInfoLevel(InfoAlgebra, 3);
gap> RootSystem(L1);
#I the Cartan subalgebra of <L> in not split
fail
Are you sure these two are isomorphic over Q (it may be trivial, I did not try finding out myself). If so, can you describe an explicit isomorphism?
after thinking some more about it, I could only find an isomorphism over Q(i). Dumb me, sorry for the confusion. As far as I can remember, SemiSimpleType
should only give enough information about the lie algebra over fields of char 0 and alg. closed.
Yeah, so if you replace Rationals
by CF(4)
, then it works:
gap> L1:=LieAlgebraByStructureConstants(CF(4), [ [ [ [ ], [ ] ], [ [ 5 ], [ -1 ] ], [ [ 6 ], [ -1 ] ], [ [ 7 ], [ -1 ] ], [ [ 2 ], [ 1 ] ], [ [ 3 ], [ 1 ] ], [ [ 4 ], [ 1 ] ], [ [ ], [ ] ], [ [ ], [ ] ], [ [ ], [ ] ] ], [ [ [ 5 ], [ 1 ] ], [ [ ], [ ] ], [ [ 8 ], [ -1 ] ], [ [ 9 ], [ -1 ] ], [ [ 1 ], [ -1 ] ], [ [ ], [ ] ], [ [ ], [ ] ], [ [ 3 ], [ 1 ] ], [ [ 4 ], [ 1 ] ], [ [ ], [ ] ] ], [ [ [ 6 ], [ 1 ] ], [ [ 8 ], [ 1 ] ], [ [ ], [ ] ], [ [ 10 ], [ -1 ] ], [ [ ], [ ] ], [ [ 1 ], [ -1 ] ], [ [ ], [ ] ], [ [ 2 ], [ -1 ] ], [ [ ], [ ] ], [ [ 4 ], [ 1 ] ] ], [ [ [ 7 ], [ 1 ] ], [ [ 9 ], [ 1 ] ], [ [ 10 ], [ 1 ] ], [ [ ], [ ] ], [ [ ], [ ] ], [ [ ], [ ] ], [ [ 1 ], [ -1 ] ], [ [ ], [ ] ], [ [ 2 ], [ -1 ] ], [ [ 3 ], [ -1 ] ] ], [ [ [ 2 ], [ -1 ] ], [ [ 1 ], [ 1 ] ], [ [ ], [ ] ], [ [ ], [ ] ], [ [ ], [ ] ], [ [ 8 ], [ -1 ] ], [ [ 9 ], [ -1 ] ], [ [ 6 ], [ 1 ] ], [ [ 7 ], [ 1 ] ], [ [ ], [ ] ] ], [ [ [ 3 ], [ -1 ] ], [ [ ], [ ] ], [ [ 1 ], [ 1 ] ], [ [ ], [ ] ], [ [ 8 ], [ 1 ] ], [ [ ], [ ] ], [ [ 10 ], [ -1 ] ], [ [ 5 ], [ -1 ] ], [ [ ], [ ] ], [ [ 7 ], [ 1 ] ] ], [ [ [ 4 ], [ -1 ] ], [ [ ], [ ] ], [ [ ], [ ] ], [ [ 1 ], [ 1 ] ], [ [ 9 ], [ 1 ] ], [ [ 10 ], [ 1 ] ], [ [ ], [ ] ], [ [ ], [ ] ], [ [ 5 ], [ -1 ] ], [ [ 6 ], [ -1 ] ] ], [ [ [ ], [ ] ], [ [ 3 ], [ -1 ] ], [ [ 2 ], [ 1 ] ], [ [ ], [ ] ], [ [ 6 ], [ -1 ] ], [ [ 5 ], [ 1 ] ], [ [ ], [ ] ], [ [ ], [ ] ], [ [ 10 ], [ -1 ] ], [ [ 9 ], [ 1 ] ] ], [ [ [ ], [ ] ], [ [ 4 ], [ -1 ] ], [ [ ], [ ] ], [ [ 2 ], [ 1 ] ], [ [ 7 ], [ -1 ] ], [ [ ], [ ] ], [ [ 5 ], [ 1 ] ], [ [ 10 ], [ 1 ] ], [ [ ], [ ] ], [ [ 8 ], [ -1 ] ] ], [ [ [ ], [ ] ], [ [ ], [ ] ], [ [ 4 ], [ -1 ] ], [ [ 3 ], [ 1 ] ], [ [ ], [ ] ], [ [ 7 ], [ -1 ] ], [ [ 6 ], [ 1 ] ], [ [ 9 ], [ -1 ] ], [ [ 8 ], [ 1 ] ], [ [ ], [ ] ] ], -1, 0 ]);
<Lie algebra of dimension 10 over GaussianRationals>
gap> RootSystem(L1);
<root system of rank 2>
Your first Lie algebra is of absolute type B2 but not split over the rationals, hence no root system can be computed (the documentation for RootSystem
explicitly states that it requires a split Cartan subalgebra)
So all in all there seems to be no actual issue here?
Observed behaviour
I have two lie algebras, both defined via structure constants. The first SC-table gets computed by hand using the basis {X_i,j = E_i,j-E_j,i | i < j} for so_5. the second is the output of
StructureConstantsTable(Basis(SimpleLieAlgebra("B",2,Rationals)));
. Both lie algebras are known to be isomorphic, and gap can even deduce that both are of typeB_2
. However, it can compute only one of the root systems, and thus stuff likeHighestWeightModule
Expected behaviour
get a valid root system in both cases
Copy and paste GAP banner (to tell us about your setup)