geerlingguy / sbc-reviews

Jeff Geerling's SBC review data - Raspberry Pi, Radxa, Orange Pi, etc.
MIT License
583 stars 13 forks source link

Raspberry Pi Compute Module 5 #58

Open geerlingguy opened 18 hours ago

geerlingguy commented 18 hours ago

cm5

Basic information

All tests were run on the 4GB board, except as noted. Some tests scale with RAM.

Linux/system information

# output of `screenfetch`
         _,met$$$$$gg.           pi@cm5
      ,g$$$$$$$$$$$$$$$P.        OS: Debian 12 bookworm
    ,g$$P""       """Y$$.".      Kernel: aarch64 Linux 6.6.51+rpt-rpi-2712
   ,$$P'              `$$$.      Uptime: 12m
  ',$$P       ,ggs.     `$$b:    Packages: 1630
  `d$$'     ,$P"'   .    $$$     Shell: bash 5.2.15
   $$P      d$'     ,    $$P     Disk: 9.4G / 237G (5%)
   $$:      $$.   -    ,d$$'     CPU: ARM Cortex-A76 @ 4x 2.4GHz
   $$\;      Y$b._   _,d$P'      GPU: 
   Y$$.    `.`"Y$$$$P"'          RAM: 677MiB / 4045MiB
   `$$b      "-.__              
    `Y$$                        
     `Y$$.                      
       `$$b.                    
         `Y$$b.                 
            `"Y$b._             
                `""""      

# output of `uname -a`
Linux cm5 6.6.51+rpt-rpi-2712 #1 SMP PREEMPT Debian 1:6.6.51-1+rpt3 (2024-10-08) aarch64 GNU/Linux

Benchmark results

CPU

Power

Disk

Pinedrive 256GB 2242 NVMe SSD at PCIe Gen 3

Benchmark Result
iozone 4K random read 63.01 MB/s
iozone 4K random write 298.06 MB/s
iozone 1M random read 820.16 MB/s
iozone 1M random write 759.24 MB/s
iozone 1M sequential read 823.04 MB/s
iozone 1M sequential write 758.51 MB/s

Built-in eMMC (32GB)

Benchmark Result
iozone 4K random read 34.71 MB/s
iozone 4K random write 61.80 MB/s
iozone 1M random read 314.97 MB/s
iozone 1M random write 108.32 MB/s
iozone 1M sequential read 316.19 MB/s
iozone 1M sequential write 109.71 MB/s
wget https://raw.githubusercontent.com/geerlingguy/pi-cluster/master/benchmarks/disk-benchmark.sh
chmod +x disk-benchmark.sh
sudo MOUNT_PATH=/ TEST_SIZE=1g ./disk-benchmark.sh

Network

iperf3 results:

Built-in 1 Gbps Ethernet (BCM54210PE)

WiFi (built-in PCB antenna)

pi@cm5:~ $ iwconfig wlan0
wlan0     IEEE 802.11  ESSID:"GE_5G"  
          Mode:Managed  Frequency:5.2 GHz  Access Point: 6C:CD:D6:61:8F:21   
          Bit Rate=390 Mb/s   Tx-Power=31 dBm   
          Retry short limit:7   RTS thr:off   Fragment thr:off
          Power Management:on
          Link Quality=57/70  Signal level=-53 dBm  
          Rx invalid nwid:0  Rx invalid crypt:0  Rx invalid frag:0
          Tx excessive retries:0  Invalid misc:0   Missed beacon:0

WiFi (external antenna)

pi@cm5:~ $ iwconfig wlan0
wlan0     IEEE 802.11  ESSID:"GE_5G"  
          Mode:Managed  Frequency:5.2 GHz  Access Point: 6C:CD:D6:61:8F:21   
          Bit Rate=433.3 Mb/s   Tx-Power=31 dBm   
          Retry short limit:7   RTS thr:off   Fragment thr:off
          Power Management:on
          Link Quality=53/70  Signal level=-57 dBm  
          Rx invalid nwid:0  Rx invalid crypt:0  Rx invalid frag:0
          Tx excessive retries:18  Invalid misc:0   Missed beacon:0

(Measured for optimal antenna orientation with sudo apt install wavemon, and wavemon)

GPU

glmark2

glmark2-es2 / glmark2-es2-wayland results:

=======================================================
    glmark2 2023.01
=======================================================
    OpenGL Information
    GL_VENDOR:      Broadcom
    GL_RENDERER:    V3D 7.1
    GL_VERSION:     OpenGL ES 3.1 Mesa 23.2.1-1~bpo12+rpt3
    Surface Config: buf=32 r=8 g=8 b=8 a=8 depth=24 stencil=0 samples=0
    Surface Size:   800x600 windowed
=======================================================
[build] use-vbo=false: FPS: 2563 FrameTime: 0.390 ms
[build] use-vbo=true: FPS: 3419 FrameTime: 0.293 ms
[texture] texture-filter=nearest: FPS: 2839 FrameTime: 0.352 ms
[texture] texture-filter=linear: FPS: 2839 FrameTime: 0.352 ms
[texture] texture-filter=mipmap: FPS: 2883 FrameTime: 0.347 ms
[shading] shading=gouraud: FPS: 2867 FrameTime: 0.349 ms
[shading] shading=blinn-phong-inf: FPS: 2487 FrameTime: 0.402 ms
[shading] shading=phong: FPS: 2109 FrameTime: 0.474 ms
[shading] shading=cel: FPS: 2045 FrameTime: 0.489 ms
[bump] bump-render=high-poly: FPS: 1406 FrameTime: 0.711 ms
[bump] bump-render=normals: FPS: 3072 FrameTime: 0.326 ms
[bump] bump-render=height: FPS: 2873 FrameTime: 0.348 ms
[effect2d] kernel=0,1,0;1,-4,1;0,1,0;: FPS: 1176 FrameTime: 0.851 ms
[effect2d] kernel=1,1,1,1,1;1,1,1,1,1;1,1,1,1,1;: FPS: 482 FrameTime: 2.078 ms
[pulsar] light=false:quads=5:texture=false: FPS: 2943 FrameTime: 0.340 ms
[desktop] blur-radius=5:effect=blur:passes=1:separable=true:windows=4: FPS: 289 FrameTime: 3.467 ms
[desktop] effect=shadow:windows=4: FPS: 1080 FrameTime: 0.926 ms
[buffer] columns=200:interleave=false:update-dispersion=0.9:update-fraction=0.5:update-method=map: FPS: 537 FrameTime: 1.863 ms
[buffer] columns=200:interleave=false:update-dispersion=0.9:update-fraction=0.5:update-method=subdata: FPS: 529 FrameTime: 1.893 ms
[buffer] columns=200:interleave=true:update-dispersion=0.9:update-fraction=0.5:update-method=map: FPS: 570 FrameTime: 1.755 ms
[ideas] speed=duration: FPS: 2264 FrameTime: 0.442 ms
[jellyfish] <default>: FPS: 1211 FrameTime: 0.826 ms
[terrain] <default>: FPS: 77 FrameTime: 13.035 ms
[shadow] <default>: FPS: 184 FrameTime: 5.463 ms
[refract] <default>: FPS: 84 FrameTime: 11.928 ms
[conditionals] fragment-steps=0:vertex-steps=0: FPS: 3268 FrameTime: 0.306 ms
[conditionals] fragment-steps=5:vertex-steps=0: FPS: 2297 FrameTime: 0.435 ms
[conditionals] fragment-steps=0:vertex-steps=5: FPS: 3222 FrameTime: 0.310 ms
[function] fragment-complexity=low:fragment-steps=5: FPS: 2733 FrameTime: 0.366 ms
[function] fragment-complexity=medium:fragment-steps=5: FPS: 1898 FrameTime: 0.527 ms
[loop] fragment-loop=false:fragment-steps=5:vertex-steps=5: FPS: 2618 FrameTime: 0.382 ms
[loop] fragment-steps=5:fragment-uniform=false:vertex-steps=5: FPS: 2622 FrameTime: 0.381 ms
[loop] fragment-steps=5:fragment-uniform=true:vertex-steps=5: FPS: 1778 FrameTime: 0.563 ms
=======================================================
                                  glmark2 Score: 1916 
=======================================================

Note: This benchmark requires an active display on the device. Not all devices may be able to run glmark2-es2, so in that case, make a note and move on!

Ollama

ollama LLM model inference results:

Pi Model CPU/GPU LLM Rate
Raspberry Pi CM5 - 4GB CPU llama3.2:3b 4.58 Tokens/s
Raspberry Pi CM5 - 8GB CPU llama3.2:3b 4.53 Tokens/s
Raspberry Pi CM5 - 8GB CPU llama3.1:8b 1.93 Tokens/s

Power consumption was a steady 9.3W during inference.

Memory

tinymembench results:

Click to expand memory benchmark result ``` tinymembench v0.4.10 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 5303.7 MB/s (0.2%) C copy backwards (32 byte blocks) : 5333.1 MB/s (0.2%) C copy backwards (64 byte blocks) : 5328.4 MB/s C copy : 6061.3 MB/s (0.1%) C copy prefetched (32 bytes step) : 6031.9 MB/s C copy prefetched (64 bytes step) : 6036.9 MB/s C 2-pass copy : 5433.6 MB/s C 2-pass copy prefetched (32 bytes step) : 6003.8 MB/s (0.1%) C 2-pass copy prefetched (64 bytes step) : 5996.6 MB/s C fill : 12660.7 MB/s (0.2%) C fill (shuffle within 16 byte blocks) : 12630.7 MB/s C fill (shuffle within 32 byte blocks) : 12628.8 MB/s C fill (shuffle within 64 byte blocks) : 12642.2 MB/s NEON 64x2 COPY : 5996.0 MB/s (1.0%) NEON 64x2x4 COPY : 5996.6 MB/s NEON 64x1x4_x2 COPY : 6006.0 MB/s NEON 64x2 COPY prefetch x2 : 5517.6 MB/s NEON 64x2x4 COPY prefetch x1 : 5587.1 MB/s NEON 64x2 COPY prefetch x1 : 5494.3 MB/s NEON 64x2x4 COPY prefetch x1 : 5596.0 MB/s (0.6%) --- standard memcpy : 6012.7 MB/s standard memset : 12646.0 MB/s (0.3%) --- NEON LDP/STP copy : 6012.5 MB/s (0.1%) NEON LDP/STP copy pldl2strm (32 bytes step) : 6014.6 MB/s (0.2%) NEON LDP/STP copy pldl2strm (64 bytes step) : 6013.5 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 5997.7 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 5995.9 MB/s NEON LD1/ST1 copy : 6002.0 MB/s NEON STP fill : 12634.8 MB/s (0.8%) NEON STNP fill : 12640.2 MB/s (0.7%) ARM LDP/STP copy : 6011.4 MB/s (0.6%) ARM STP fill : 12403.9 MB/s (0.4%) ARM STNP fill : 12408.2 MB/s (0.2%) ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 1939.3 MB/s (0.7%) NEON LDP/STP 2-pass copy (from framebuffer) : 1737.0 MB/s (0.2%) NEON LD1/ST1 copy (from framebuffer) : 1945.3 MB/s (0.2%) NEON LD1/ST1 2-pass copy (from framebuffer) : 1736.1 MB/s ARM LDP/STP copy (from framebuffer) : 1894.0 MB/s (0.1%) ARM LDP/STP 2-pass copy (from framebuffer) : 1732.5 MB/s (0.1%) ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 0.0 ns / 0.0 ns 131072 : 1.1 ns / 1.5 ns 262144 : 1.6 ns / 2.0 ns 524288 : 2.3 ns / 2.9 ns 1048576 : 8.3 ns / 11.3 ns 2097152 : 15.1 ns / 19.0 ns 4194304 : 51.5 ns / 77.4 ns 8388608 : 79.8 ns / 108.0 ns 16777216 : 94.9 ns / 119.5 ns 33554432 : 104.4 ns / 126.1 ns 67108864 : 110.0 ns / 130.3 ns ```

sbc-bench results

Run sbc-bench and paste a link to the results here: https://0x0.st/XRKg.txt

Phoronix Test Suite

Results from pi-general-benchmark.sh:

Other benchmarks

schoolpost commented 17 hours ago

Thanks for all the thorough performance numbers, can you confirm CM5 uses the D0 variant of the BCM2712?

geerlingguy commented 16 hours ago

@schoolpost - All the ones I've seen are D0, yes.

geerlingguy commented 7 hours ago

Home Assistant Yellow is also a drop-in upgrade, in addition to all the Compute Module carrier boards I mentioned in my video: https://www.youtube.com/watch?v=X4blR5Ua3S0