Open rasmi-ui opened 3 years ago
Hi!
I can't relate this issue to any known problem.
I recommend to download pipeline conda environments again (delete directory: work/conda) o try using the Docker profile. Feel free to post again if the problem persists.
I am facing the same problem. Deleting the mentioned directory did not help me. I am unable to use docker profile, due to some unavoidable reasons.
This time I have used docker profile to run pipeline. The pipeline ran successfully after removing the samples which was resulting in error. It gives cluster and relatives abundance of each individual samples as output. How do I generate OTUs table from these output to go for downstream analysis?
Any suggestion how to go about this?
On Thu, 13 May, 2021, 4:34 pm mdrishti, @.***> wrote:
I am facing the same problem. Deleting the mentioned directory did not help me. I am unable to use docker profile, due to some unavoidable reasons.
— You are receiving this because you modified the open/close state. Reply to this email directly, view it on GitHub https://github.com/genomicsITER/NanoCLUST/issues/34#issuecomment-840485377, or unsubscribe https://github.com/notifications/unsubscribe-auth/AT7OUKTPUXSHBGAFKOZ5IB3TNOW5LANCNFSM44KX4OVQ .
I have just met this problem too. If you know how to solve it, please tell me.
Thank you.
@Syutenjyo @rasmi-ui
This error is caused by umap-learn model not installed correctly.
You just need to uninstall the umap-learn model and re-install it.
Same problem as above when running with -profile test,conda
on a Mac.
I managed to solve it by updating the umap-learn version in the conda_envs/read_correction/environment.yml
file with:
- umap-learn =0.5.1
If you are on a Mac, you should probably use docker and not conda for this tool. I believe the problem is coming from the different versions of packages available on conda that depend on whether you are on Mac or Linux. I stumbled upon a similar problem later on when using canu for the read_correction step (and thus decided to not use conda for NanoCLUST).
Hi, I have run a fastq.gz sample file on NanoCLUST using following command nextflow run NanoCLUST/main.nf -profile conda --reads barcode01_filt.fastq.gz --db db/16S_ribosomal_RNA --tax db/taxdb/
Run Name : tiny_wescoff Config Profile : conda
Getting error in read_clustering :
_Error executing process > 'read_clustering (1)'
Caused by: Process
read_clustering (1)
terminated with an error exit status (1)Command executed [/userdata/Punit/Rashmita_data/nanoclust/NanoCLUST/templates/umap_hdbscan.py]:
!/usr/bin/env python
import numpy as np import umap import matplotlib.pyplot as plt from sklearn import decomposition import random import pandas as pd import hdbscan
df = pd.read_csv("freqs.txt", delimiter=" ")
UMAP
motifs = [x for x in df.columns.values if x not in ["read", "length"]] X = df.loc[:,motifs] X_embedded = umap.UMAP(n_neighbors=15, min_dist=0.1, verbose=2).fit_transform(X)
df_umap = pd.DataFrame(X_embedded, columns=["D1", "D2"]) umap_out = pd.concat([df["read"], df["length"], df_umap], axis=1)
HDBSCAN
X = umap_out.loc[:,["D1", "D2"]] umap_out["bin_id"] = hdbscan.HDBSCAN(min_cluster_size=int(50), cluster_selection_epsilon=int(0.5)).fit_predict(X)
PLOT
plt.figure(figsize=(20,20)) plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=umap_out["bin_id"], cmap='Spectral', s=1) plt.xlabel("UMAP1", fontsize=18) plt.ylabel("UMAP2", fontsize=18) plt.gca().set_aspect('equal', 'datalim') plt.title("Projecting " + str(len(umap_out['bin_id'])) + " reads. " + str(len(umap_out['bin_id'].unique())) + " clusters generated by HDBSCAN", fontsize=18)
for cluster in np.sort(umap_out['bin_id'].unique()): read = umap_out.loc[umap_out['bin_id'] == cluster].iloc[0] plt.annotate(str(cluster), (read['D1'], read['D2']), weight='bold', size=14)
plt.savefig('hdbscan.output.png') umap_out.to_csv("hdbscan.output.tsv", sep=" ", index=False)
Command exit status: 1
Command output: (empty)
Command error: retval = self._compile_core(args, return_type) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/dispatcher.py", line 106, in _compile_core cres = compiler.compile_extra(self.targetdescr.typing_context, File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler.py", line 606, in compile_extra return pipeline.compile_extra(func) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler.py", line 353, in compile_extra return self._compile_bytecode() File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler.py", line 415, in _compile_bytecode return self._compile_core() File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler.py", line 395, in _compile_core raise e File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler.py", line 386, in _compile_core pm.run(self.state) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 339, in run raise patched_exception File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 330, in run self._runPass(idx, pass_inst, state) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler_lock.py", line 35, in _acquire_compile_lock return func(*args, **kwargs) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 289, in _runPass mutated |= check(pss.run_pass, internal_state) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 262, in check mangled = func(compiler_state) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/typed_passes.pexecutor > local (5) [bf/efa57f] process > QC (1) [100%] 1 of 1 ✔ [7e/0435bb] process > fastqc (1) [100%] 1 of 1 ✔ [e0/371311] process > kmer_freqs (1) [100%] 1 of 1 ✔ [59/28559d] process > read_clustering (1) [100%] 1 of 1, failed: 1 ✘ [- ] process > split_by_cluster - [- ] process > read_correction - [- ] process > draft_selection - [- ] process > racon_pass - [- ] process > medaka_pass - [- ] process > consensus_classification - [- ] process > join_results - [- ] process > get_abundances - [- ] process > plot_abundances - [e3/c6f429] process > output_documentation [100%] 1 of 1 ✔ Error executing process > 'read_clustering (1)'
Caused by: Process
read_clustering (1)
terminated with an error exit status (1)Command executed [/userdata/Punit/Rashmita_data/nanoclust/NanoCLUST/templates/umap_hdbscan.py]:
!/usr/bin/env python
import numpy as np import umap import matplotlib.pyplot as plt from sklearn import decomposition import random import pandas as pd import hdbscan
df = pd.read_csv("freqs.txt", delimiter="lue=$")
UMAP
motifs = [x for x in df.columns.values if x not in ["read", "length"]] X = df.loc[:,motifs] X_embedded = umap.UMAP(n_neighbors=15, min_dist=0.1, verbose=2).fit_transform(X)
df_umap = pd.DataFrame(X_embedded, columns=["D1", "D2"]) umap_out = pd.concat([df["read"], df["length"], df_umap], axis=1)
HDBSCAN
X = umap_out.loc[:,["D1", "D2"]] umap_out["bin_id"] = hdbscan.HDBSCAN(min_cluster_size=int(50), cluster_selection_epsilon=int(0.5)).fit_predict(X)
PLOT
plt.figure(figsize=(20,20)) plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=umap_out["bin_id"], cmap='Spectral', s=1) plt.xlabel("UMAP1", fontsize=18) plt.ylabel("UMAP2", fontsize=18) plt.gca().set_aspect('equal', 'datalim') plt.title("Projecting " + str(len(umap_out['bin_id'])) + " reads. " + str(len(umap_out['bin_id'].unique())) + " clusters generated by HDBSCAN", fontsize=18)
for cluster in np.sort(umap_out['bin_id'].unique()): read = umap_out.loc[umap_out['bin_id'] == cluster].iloc[0] plt.annotate(str(cluster), (read['D1'], read['D2']), weight='bold', size=14)
plt.savefig('hdbscan.output.png') umap_out.to_csv("hdbscan.output.tsv", sep=" ", index=False)
Command exit status: 1
Command output: (empty)
Command error: retval = self._compile_core(args, return_type) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/dispatcher.py", line 106, in _compile_core cres = compiler.compile_extra(self.targetdescr.typing_context, File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler.py", line 606, in compile_extra return pipeline.compile_extra(func) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler.py", line 353, in compile_extra return self._compile_bytecode() File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler.py", line 415, in _compile_bytecode return self._compile_core() File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler.py", line 395, in _compile_core raise e File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler.py", line 386, in _compile_core pm.run(self.state) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 339, in run raise patched_exception File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 330, in run self._runPass(idx, pass_inst, state) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler_lock.py", line 35, in _acquire_compile_lock return func(*args, **kwargs) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 289, in _runPass mutated |= check(pss.run_pass, internal_state) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/compiler_machinery.py", line 262, in check mangled = func(compiler_state) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/typed_passes.py", line 463, in run_pass NativeLowering().run_pass(state) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/typed_passes.py", line 384, in run_pass lower.lower() File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/lowering.py", line 136, in lower self.lower_normal_function(self.fndesc) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/lowering.py", line 190, in lower_normal_function entry_block_tail = self.lower_function_body() File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/lowering.py", line 216, in lower_function_body self.lower_block(block) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/lowering.py", line 230, in lower_block self.lower_inst(inst) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/contextlib.py", line 131, in exit self.gen.throw(type, value, traceback) File "/userdata/Punit/Rashmita_data/nanoclust/work/conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/numba/core/errors.py", line 751, in new_error_context raise newerr.with_traceback(tb) numba.core.errors.LoweringError: Failed in nopython mode pipeline (step: nopython mode backend) Storing i64 to ptr of i32 ('dim'). FE type int32
File "../../conda/read_clustering-800e1e27475cbaa0538f834c4aacc420/lib/python3.8/site-packages/umap/layouts.py", line 52: def rdist(x, y):