glucauze / sd-webui-faceswaplab

Extended faceswap extension for StableDiffusion web-ui with multiple faceswaps, inpainting, checkpoints, ....
https://glucauze.github.io/sd-webui-faceswaplab/
GNU Affero General Public License v3.0
764 stars 104 forks source link

Model error [CPUExecutionProvider] #139

Open noctivagus47 opened 1 year ago

noctivagus47 commented 1 year ago

I'm getting this error even after reinstalling.

2023-10-18 18:20:38,833 - FaceSwapLab - INFO - ("Applied providers: ['CPUExecutionProvider'], with options: " "{'CPUExecutionProvider': {}}\n" 'find model: ' 'D:\Programas\StableDiff\stable-diffusion-webui\models\faceswaplab\analysers\models\buffalo_l\1k3d68.onnx ' "landmark_3d_68 ['None', 3, 192, 192] 0.0 1.0\n" "Applied providers: ['CPUExecutionProvider'], with options: " "{'CPUExecutionProvider': {}}\n" 'find model: ' 'D:\Programas\StableDiff\stable-diffusion-webui\models\faceswaplab\analysers\models\buffalo_l\2d106det.onnx ' "landmark_2d_106 ['None', 3, 192, 192] 0.0 1.0\n" "Applied providers: ['CPUExecutionProvider'], with options: " "{'CPUExecutionProvider': {}}\n" 'find model: ' 'D:\Programas\StableDiff\stable-diffusion-webui\models\faceswaplab\analysers\models\buffalo_l\det_10g.onnx ' "detection [1, 3, '?', '?'] 127.5 128.0\n" "Applied providers: ['CPUExecutionProvider'], with options: " "{'CPUExecutionProvider': {}}\n" 'find model: ' 'D:\Programas\StableDiff\stable-diffusion-webui\models\faceswaplab\analysers\models\buffalo_l\genderage.onnx ' "genderage ['None', 3, 96, 96] 0.0 1.0\n" "Applied providers: ['CPUExecutionProvider'], with options: " "{'CPUExecutionProvider': {}}\n" 'find model: ' 'D:\Programas\StableDiff\stable-diffusion-webui\models\faceswaplab\analysers\models\buffalo_l\w600k_r50.onnx ' "recognition ['None', 3, 112, 112] 127.5 127.5\n" 'set det-size: (640, 640)\n') D:\Programas\StableDiff\stable-diffusion-webui\venv\lib\site-packages\insightface\utils\transform.py:68: FutureWarning: rcond parameter will change to the default of machine precision times max(M, N) where M and N are the input matrix dimensions. To use the future default and silence this warning we advise to pass rcond=None, to keep using the old, explicitly pass rcond=-1. P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4