Closed Pradyumna-jain closed 1 year ago
Hi @Pradyumna-jain ,
Could you answer below questions.
Q: can you find any log messages indicating progress throug hgthe set of input images?
Q: are there more than one image in your input set?
If Yes, then let's debug the calculator which write the index.
Hi @sureshdagooglecom . A: No I can't see any log messages. A: I have tried with one image and more than one image but output was same.
Hi @Pradyumna-jain, Command line looks suspicious. specifically the "file_directory" assigned empty string "output_index_filename" assigned empty string. let's look at how "output_index_filename" is used in the "template_matching_tflite" binary. Could try out the below steps and build again the solution
Step 1: Put all template images in a single directory.
Step 2: To build the index file for all templates in the directory, run
blaze build -c opt --define DRISHTI_DISABLE_GPU=1 \
third_party/mediapipe/examples/desktop/template_matching:template_matching_tflite
blaze-bin/third_party/mediapipe/examples/desktop/template_matching/template_matching_tflite \
--calculator_graph_config_file=third_party/mediapipe/graphs/template_matching/index_building.pbtxt \
--input_side_packets="file_directory=<template image directory>,file_suffix=png,output_index_filename=<output index filename>"
The output index file includes the extracted KNIFT features.
Step 3: Replace third_party/mediapipe/models/knift_index.pb with the index file you generated, and update third_party/mediapipe/models/knift_labelmap.txt with your own template names.
Step 4: Build and run the app using the same instructions in Matching US Dollar Bills.
This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you.
Closing as stale. Please reopen if you'd like to work on this further.
System information
Describe the problem:
Hi when i try to build my template matching index file as below: GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/template_matching/template_matching_tflite --calculator_graph_config_file=mediapipe/graphs/template_matching/index_building.pbtxt --input_side_packets="file_directory=,file_suffix='png',output_index_filename="
i put the template image in the directory (the attach file is the template image) and the output index file is a empty file with 0 byte no error message
Complete Logs:
max_queue_size limits the number of packets enqueued on any input stream
by throttling inputs to the graph. This makes the graph only process one
frame per time.
max_queue_size: 1
Decodes an input video file into images and a video header.
node { calculator: "LocalFilePatternContentsCalculator" input_side_packet: "FILE_DIRECTORY:file_directory" input_side_packet: "FILE_SUFFIX:file_suffix" output_stream: "CONTENTS:encoded_image" }
node { calculator: "OpenCvEncodedImageToImageFrameCalculator" input_stream: "encoded_image" output_stream: "image_frame" }
node: { calculator: "ImageTransformationCalculator" input_stream: "IMAGE:image_frame" output_stream: "IMAGE:scaled_image_frame" node_options: { [type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] { output_width: 320 output_height: 320 scale_mode: FILL_AND_CROP } } }
node { calculator: "ImagePropertiesCalculator" input_stream: "IMAGE:scaled_image_frame" output_stream: "SIZE:input_video_size" }
node { calculator: "FeatureDetectorCalculator" input_stream: "IMAGE:scaled_image_frame" output_stream: "FEATURES:features" output_stream: "LANDMARKS:landmarks" output_stream: "PATCHES:patches" node_options: { [type.googleapis.com/mediapipe.FeatureDetectorCalculatorOptions] { max_features: 400 } } }
input tensors: 2003232*1 float
output tensors: 20040 float, only first keypoint.size()40 is knift features,
rest is padded by zero.
node { calculator: "TfLiteInferenceCalculator" input_stream: "TENSORS:patches" output_stream: "TENSORS:knift_feature_tensors" input_stream_handler { input_stream_handler: "DefaultInputStreamHandler" } node_options: { [type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] { model_path: "mediapipe/models/knift_float_400.tflite" } } }
node { calculator: "TfLiteTensorsToFloatsCalculator" input_stream: "TENSORS:knift_feature_tensors" output_stream: "FLOATS:knift_feature_floats" }
node { calculator: "BoxDetectorCalculator" input_side_packet: "OUTPUT_INDEX_FILENAME:output_index_filename" input_stream: "FEATURES:features" input_stream: "IMAGE_SIZE:input_video_size" input_stream: "DESCRIPTORS:knift_feature_floats"
node_options: { [type.googleapis.com/mediapipe.BoxDetectorCalculatorOptions] { detector_options { index_type: OPENCV_BF detect_every_n_frame: 1 } } } } I20220907 08:43:50.558111 21422 simple_run_graph_main.cc:122] Initialize the calculator graph. I20220907 08:43:50.571517 21422 simple_run_graph_main.cc:137] Start running the calculator graph. I20220907 08:43:50.603758 21422 simple_run_graph_main.cc:152] Success!