google-research / bert

TensorFlow code and pre-trained models for BERT
https://arxiv.org/abs/1810.04805
Apache License 2.0
38.24k stars 9.62k forks source link

BERT-SST #160

Open middle-plat-ai opened 6 years ago

middle-plat-ai commented 6 years ago

How to run Stanford Sentiment Treebank(SST-2) task with BERT?

astariul commented 6 years ago

You need to modify run_classifier.py as described in this issue : #74

WPti commented 5 years ago

@Colanim Can you share what you did for run_classify on sentiment data? Any chance trying imdb data?

astariul commented 5 years ago

I didn't modify it for sentiment data, but for another dataset (STS-B).

Basically what I did is :

def metric_fn(per_example_loss, label_ids, logits):               
        # Compute Pearson correlation
        pearson = tf.contrib.metrics.streaming_pearson_correlation(logits, label_ids)

        # Compute MSE
        mse = tf.metrics.mean_squared_error(label_ids, logits)

        # Compute Spearman correlation
        size = tf.size(logits)
        indice_of_ranks_pred = tf.nn.top_k(logits, k=size)[1]
        indice_of_ranks_label = tf.nn.top_k(label_ids, k=size)[1]
        rank_pred = tf.nn.top_k(-indice_of_ranks_pred, k=size)[1]
        rank_label = tf.nn.top_k(-indice_of_ranks_label, k=size)[1]
        rank_pred = tf.to_float(rank_pred)
        rank_label = tf.to_float(rank_label)
        spearman = tf.contrib.metrics.streaming_pearson_correlation(rank_pred, rank_label)

        return {'pearson': pearson, 'spearman': spearman, 'MSE': mse}
"label_ids":
            tf.constant(all_label_ids, shape=[num_examples], dtype=tf.float32),

You have the official advices of Jacob Devlin in this issue : #74

WPti commented 5 years ago

@Colanim thanks for sharing!

charmpeng commented 5 years ago

@Colanim

You have the official advices of Jacob Devlin in this issue : #74 May I know what changes you do in main function? I'm also doing fine-tuning in STS-B dataset. I have 1.added the StsProcessor; 2.changed metricfn in model_fn_builder; 3.changed the data type of label_ids; But I don't know how to change main function. Would you mind share your source code? Thanks.

astariul commented 5 years ago

Here is my main() :

def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)

  processors = {
      "sick": SickProcessor,
      "sts": StsProcessor
  }

  if not FLAGS.do_train and not FLAGS.do_eval:
    raise ValueError("At least one of `do_train` or `do_eval` must be True.")

  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  if FLAGS.max_seq_length > bert_config.max_position_embeddings:
    raise ValueError(
        "Cannot use sequence length %d because the BERT model "
        "was only trained up to sequence length %d" %
        (FLAGS.max_seq_length, bert_config.max_position_embeddings))

  tf.gfile.MakeDirs(FLAGS.output_dir)

  task_name = FLAGS.task_name.lower()

  if task_name not in processors:
    raise ValueError("Task not found: %s" % (task_name))

  processor = processors[task_name]()

  # label_list = processor.get_labels()
  label_list = None

  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

  tpu_cluster_resolver = None
  if FLAGS.use_tpu and FLAGS.tpu_name:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

  is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
  run_config = tf.contrib.tpu.RunConfig(
      cluster=tpu_cluster_resolver,
      master=FLAGS.master,
      model_dir=FLAGS.output_dir,
      save_checkpoints_steps=FLAGS.save_checkpoints_steps,
      tpu_config=tf.contrib.tpu.TPUConfig(
          iterations_per_loop=FLAGS.iterations_per_loop,
          num_shards=FLAGS.num_tpu_cores,
          per_host_input_for_training=is_per_host))

  train_examples = None
  num_train_steps = None
  num_warmup_steps = None
  if FLAGS.do_train:
    train_examples = processor.get_train_examples(FLAGS.data_dir)
    num_train_steps = int(
        len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
    num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

  model_fn = model_fn_builder(
      bert_config=bert_config,
      init_checkpoint=FLAGS.init_checkpoint,
      learning_rate=FLAGS.learning_rate,
      num_train_steps=num_train_steps,
      num_warmup_steps=num_warmup_steps,
      use_tpu=FLAGS.use_tpu,
      use_one_hot_embeddings=FLAGS.use_tpu)

  # If TPU is not available, this will fall back to normal Estimator on CPU
  # or GPU.
  estimator = tf.contrib.tpu.TPUEstimator(
      use_tpu=FLAGS.use_tpu,
      model_fn=model_fn,
      config=run_config,
      train_batch_size=FLAGS.train_batch_size,
      eval_batch_size=FLAGS.eval_batch_size)

  if FLAGS.do_train:
    import time
    train_t0 = time.time()
    train_features = convert_examples_to_features(
        train_examples, label_list, FLAGS.max_seq_length, tokenizer)
    tf.logging.info("***** Running training *****")
    tf.logging.info("  Num examples = %d", len(train_examples))
    tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
    tf.logging.info("  Num steps = %d", num_train_steps)
    train_input_fn = input_fn_builder(
        features=train_features,
        seq_length=FLAGS.max_seq_length,
        is_training=True,
        drop_remainder=True)
    estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
    train_t1 = time.time()

  if FLAGS.do_eval:
    eval_examples = processor.get_dev_examples(FLAGS.data_dir)
    eval_features = convert_examples_to_features(
        eval_examples, label_list, FLAGS.max_seq_length, tokenizer)

    tf.logging.info("***** Running evaluation *****")
    tf.logging.info("  Num examples = %d", len(eval_examples))
    tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

    # This tells the estimator to run through the entire set.
    eval_steps = None
    # However, if running eval on the TPU, you will need to specify the
    # number of steps.
    if FLAGS.use_tpu:
      # Eval will be slightly WRONG on the TPU because it will truncate
      # the last batch.
      eval_steps = int(len(eval_examples) / FLAGS.eval_batch_size)

    eval_drop_remainder = True if FLAGS.use_tpu else False
    eval_input_fn = input_fn_builder(
        features=eval_features,
        seq_length=FLAGS.max_seq_length,
        is_training=False,
        drop_remainder=eval_drop_remainder)

    result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)

    output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
    with tf.gfile.GFile(output_eval_file, "w") as writer:
      tf.logging.info("***** Eval results *****")
      for key in sorted(result.keys()):
        tf.logging.info("  %s = %s", key, str(result[key]))
        writer.write("%s = %s\n" % (key, str(result[key])))

Basically what you had to change is that you don't have class anymore. So label_list does not make sense anymore. So I just set it to None and removed it when it was called in other functions.

Let me know if it works 👍

charmpeng commented 5 years ago

@Colanim I followed what you showed above and changed the main() function. And I realized that in the initial main() function, they use files_based method to convert_examples_to_features and build the input_fn_builder, however, you use the non-files_based way. But an error occured when I ran the changed file. It shows that TypeError: model_fn_builder() missing 1 required positional argument: 'num_labels'. So I know that you also made changes to the model_fn_builder(), delete the argument -- num_labels. You said that label_list does not make sense, that's the reason why you removed num_labels, right? Would you mind upload your whole run_classifier.py or just the whole bert program in Github, so that I can follow you, and see what improvement I need to do to train the STS dataset? Thanks!

astariul commented 5 years ago

Here you go : run_scorer.py

charmpeng commented 5 years ago

@Colanim Thanks! I have tried do fine-tuning using your code run_scorer,py. During train and eval, it performs well,

MSE = 0.48805913
global_step = 1796
label_ids = [5.   4.75 5.   ... 2.   0.   0.  ]
loss = 0.4898354
pearson = 0.8921575
pred = [5.055186  4.7891555 5.0168333 ... 2.493906  0.8447667 1.1127251]
spearman = 0.78399885.

However, during test, the result is bad,

MSE = 0.16579048
global_step = 0
label_ids = [0. 0. 0. ... 0. 0. 0.]
loss = 0.16522574
pearson = nan
pred = [ 0.34180358  0.4761568   0.30145267 ...  0.10529003 -0.12108919
 -0.05159474]
spearman = -4.0138337e-05

I don't know the reason, maybe I need to change estimator.evaluate to estimator.predict? And I also changed the

 def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for (i, line) in enumerate(lines):
        if i == 0:
            continue
        guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0]))
        text_a = tokenization.convert_to_unicode(line[-3])
        text_b = tokenization.convert_to_unicode(line[-2])
        if set_type == "test":
          label = 0.0
        else:
          label = float(line[-1])
        examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

in StsProcessor to do test.

astariul commented 5 years ago

STS-B doesn't have labels for the test. Check the file test.tsv you will understand ^^

test.tsv is used for benchmark (for the GLUE benchmark), therefore you cannot use it to evaluate your model (because you don't know the labels).

charmpeng commented 5 years ago

STS-B doesn't have labels for the test. Check the file test.tsv you will understand ^^

test.tsv is used for benchmark (for the GLUE benchmark), therefore you cannot use it to evaluate your model (because you don't know the labels).

I got it. Because there are no lables in test.tsv, so the model cannot calculate the Pearson's r and MSE. Thanks for your help!

Pranav2396 commented 5 years ago

@Colanim I am not getting predictions for all examples in test.tsv. I am getting predictions only for some examples like [ 0.34180358 0.4761568 0.30145267 ... 0.10529003 -0.12108919 -0.05159474]. Is it because of streamingconcat ? How to modify it to get all prediction values?

Thanks.