This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm, corresponding to the paper Fully Supervised Speaker Diarization.
Making a prediction on CPU after training on GPU, getting running time error.
To Reproduce
Train UIS-RNN on GPU
Predict on CPU only machine
Commands and arguments
Default arguments.
Logs
Traceback (most recent call last):
File ".\speakerDiarization.py", line 207, in <module>
main(r'wavs/rmdmy.wav', embedding_per_second=1.2, overlap_rate=0.4)
File ".\speakerDiarization.py", line 158, in main
uisrnnModel.load(SAVED_MODEL_NAME)
File "C:\Users\Prasanth\Desktop\VScode\stage\Speaker-Diarization\uisrnn\uisrnn.py", line 151, in load
var_dict = torch.load(filepath)
File "C:\Users\Prasanth\AppData\Local\Programs\Python\Python37\lib\site-packages\torch\serialization.py", line 607, in load
return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args)
File "C:\Users\Prasanth\AppData\Local\Programs\Python\Python37\lib\site-packages\torch\serialization.py", line 882, in _load
result = unpickler.load()
File "C:\Users\Prasanth\AppData\Local\Programs\Python\Python37\lib\site-packages\torch\serialization.py", line 857, in persistent_load
load_tensor(data_type, size, key, _maybe_decode_ascii(location))
File "C:\Users\Prasanth\AppData\Local\Programs\Python\Python37\lib\site-packages\torch\serialization.py", line 846, in load_tensor
loaded_storages[key] = restore_location(storage, location)
File "C:\Users\Prasanth\AppData\Local\Programs\Python\Python37\lib\site-packages\torch\serialization.py", line 175, in default_restore_location
result = fn(storage, location)
File "C:\Users\Prasanth\AppData\Local\Programs\Python\Python37\lib\site-packages\torch\serialization.py", line 151, in _cuda_deserialize
device = validate_cuda_device(location)
File "C:\Users\Prasanth\AppData\Local\Programs\Python\Python37\lib\site-packages\torch\serialization.py", line 135, in validate_cuda_device
raise RuntimeError('Attempting to deserialize object on a CUDA '
RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.
Describe the bug
Making a prediction on CPU after training on GPU, getting running time error.
To Reproduce
Train UIS-RNN on GPU Predict on CPU only machine
Commands and arguments
Default arguments.
Logs
Versions