from flask import Flask
def create_app():
app = Flask(__name__)
from .routes import main as main_blueprint
app.register_blueprint(main_blueprint)
return app
2. app/routes.py
from flask import Blueprint, request, jsonify
from .gan import generate_image
from .sentiment_analysis import analyze_sentiment
from .speech_recognition import transcribe_audio
from .translation import translate_text
from .assistant import generate_response
main = Blueprint('main', __name__)
@main.route('/')
def index():
return "Welcome to AURORA AI"
@main.route('/generate_image', methods=['POST'])
def generate_image_route():
# Implement image generation logic here
return jsonify({"message": "Image generation route"})
@main.route('/analyze_sentiment', methods=['POST'])
def analyze_sentiment_route():
text = request.json['text']
result = analyze_sentiment(text)
return jsonify(result)
@main.route('/transcribe_audio', methods=['POST'])
def transcribe_audio_route():
# Implement audio transcription logic here
return jsonify({"message": "Audio transcription route"})
@main.route('/translate', methods=['POST'])
def translate_route():
text = request.json['text']
target_language = request.json['target_language']
result = translate_text(text, target_language)
return jsonify({"translated_text": result})
@main.route('/assistant', methods=['POST'])
def assistant_route():
prompt = request.json['prompt']
response = generate_response(prompt)
return jsonify({"response": response})
3. app/gan.py
# Import the necessary libraries for GANs
import torch
from torchvision.utils import save_image
from stylegan2_pytorch import Trainer
# Function to generate image
def generate_image():
# Define and train the GAN here
return "GAN Image"
4. app/sentiment_analysis.py
from transformers import pipeline
sentiment_pipeline = pipeline('sentiment-analysis')
def analyze_sentiment(text):
result = sentiment_pipeline(text)
return result
5. app/speech_recognition.py
from google.cloud import speech_v1p1beta1 as speech
client = speech.SpeechClient()
def transcribe_audio(file_path):
with open(file_path, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code="en-US",
)
response = client.recognize(config=config, audio=audio)
for result in response.results:
return result.alternatives[0].transcript
6. app/translation.py
from google.cloud import translate_v2 as translate
translate_client = translate.Client()
def translate_text(text, target_language):
result = translate_client.translate(text, target_language=target_language)
return result["translatedText"]
PROJETO MK ULTA AURORA STK 3.6.9
Estrutura do Projeto
1.
app/__init__.py
2.
app/routes.py
3.
app/gan.py
4.
app/sentiment_analysis.py
5.
app/speech_recognition.py
6.
app/translation.py
7.
app/assistant.py
8.
templates/index.html
9.
static/css/styles.css
10.
run.py
11.
requirements.txt
Subindo o Projeto
Clone o repositório e instale as dependências:
Configuração do Google Cloud:
GOOGLE_APPLICATION_CREDENTIALS
:Execute a aplicação: