WARNING[XFORMERS]: xFormers can't load C++/CUDA extensions. xFormers was built for:
PyTorch 2.3.0+cu121 with CUDA 1201 (you have 2.4.0+cu121)
Python 3.10.14 (you have 3.10.12)
Please reinstall xformers (see https://github.com/facebookresearch/xformers#installing-xformers)
Memory-efficient attention, SwiGLU, sparse and more won't be available.
Set XFORMERS_MORE_DETAILS=1 for more details
Loading weights [fa892e66c0] from /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/4_sdxlNijiSpecial_sdxlNijiSE.safetensors
Creating model from config: /content/gdrive/MyDrive/sd/stablediffusion/generative-models/configs/inference/sd_xl_base.yaml
Running on public URL: https://d074e93d780b110106.gradio.live/
✔ Connected
Startup time: 32.2s (import torch: 19.7s, import gradio: 1.7s, setup paths: 1.8s, initialize shared: 0.2s, other imports: 1.5s, list SD models: 1.7s, load scripts: 1.0s, initialize extra networks: 0.2s, create ui: 1.5s, gradio launch: 1.9s, add APIs: 0.8s).
Applying attention optimization: xformers... done.
Model loaded in 21.8s (load weights from disk: 3.1s, create model: 1.9s, apply weights to model: 14.5s, move model to device: 0.1s, hijack: 0.4s, load textual inversion embeddings: 0.7s, calculate empty prompt: 0.8s).
0% 0/20 [00:00<?, ?it/s]
Error completing request
Arguments: ('task(z4p319i8avkc29w)', <gradio.routes.Request object at 0x79bc4bd3ce50>, '1 girl', '', [], 1, 1, 7, 512, 512, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', 'Use same scheduler', '', '', [], 0, 20, 'DPM++ 2M', 'Automatic', False, '', 0.8, -1, False, -1, 0, 0, 0, False, False, 'positive', 'comma', 0, False, False, 'start', '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, False, False, False, 0, False) {}
Traceback (most recent call last):
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 74, in f
res = list(func(*args, kwargs))
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 53, in f
res = func(*args, *kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 37, in f
res = func(args, kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/txt2img.py", line 109, in txt2img
processed = processing.process_images(p)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 847, in process_images
res = process_images_inner(p)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 988, in process_images_inner
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 1346, in sample
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 230, in sample
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, extra_params_kwargs))
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_common.py", line 272, in launch_sampling
return func()
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 230, in
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, extra_params_kwargs))
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/sampling.py", line 594, in sample_dpmpp_2m
denoised = model(x, sigmas[i] * s_in, *extra_args)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_cfg_denoiser.py", line 249, in forward
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, *kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(args, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/external.py", line 112, in forward
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/external.py", line 138, in get_eps
return self.inner_model.apply_model(*args, *kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_models_xl.py", line 43, in apply_model
return self.model(x, t, cond)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_utils.py", line 22, in
setattr(resolved_obj, func_path[-1], lambda *args, *kwargs: self(args, kwargs))
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_utils.py", line 34, in call
return self.sub_func(self.orig_func, args, kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_unet.py", line 50, in apply_model
result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/diffusionmodules/wrappers.py", line 28, in forward
return self.diffusion_model(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, *kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_unet.py", line 91, in UNetModel_forward
return original_forward(self, x, timesteps, context, args, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/diffusionmodules/openaimodel.py", line 993, in forward
h = module(h, emb, context)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, *kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/diffusionmodules/openaimodel.py", line 100, in forward
x = layer(x, context)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/attention.py", line 627, in forward
x = block(x, context=context[i])
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, *kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(args, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/attention.py", line 459, in forward
return checkpoint(
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/diffusionmodules/util.py", line 167, in checkpoint
return func(inputs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/attention.py", line 467, in _forward
self.attn1(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, *kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(args, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_optimizations.py", line 497, in xformers_attention_forward
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))
File "/usr/local/lib/python3.10/dist-packages/xformers/ops/fmha/init__.py", line 268, in memory_efficient_attention
return _memory_efficient_attention(
File "/usr/local/lib/python3.10/dist-packages/xformers/ops/fmha/init__.py", line 387, in _memory_efficient_attention
return _memory_efficient_attention_forward(
File "/usr/local/lib/python3.10/dist-packages/xformers/ops/fmha/init.py", line 403, in _memory_efficient_attention_forward
op = _dispatch_fw(inp, False)
File "/usr/local/lib/python3.10/dist-packages/xformers/ops/fmha/dispatch.py", line 125, in _dispatch_fw
return _run_priority_list(
File "/usr/local/lib/python3.10/dist-packages/xformers/ops/fmha/dispatch.py", line 65, in _run_priority_list
raise NotImplementedError(msg)
NotImplementedError: No operator found for memory_efficient_attention_forward with inputs:
query : shape=(2, 1024, 10, 64) (torch.float16)
key : shape=(2, 1024, 10, 64) (torch.float16)
value : shape=(2, 1024, 10, 64) (torch.float16)
attn_bias : <class 'NoneType'>
p : 0.0
decoderF is not supported because:
xFormers wasn't build with CUDA support
attn_bias type is <class 'NoneType'>
operator wasn't built - see python -m xformers.info for more info
flshattF@0.0.0 is not supported because:
xFormers wasn't build with CUDA support
requires device with capability > (8, 0) but your GPU has capability (7, 5) (too old)
cutlassF is not supported because:
xFormers wasn't build with CUDA support
operator wasn't built - see python -m xformers.info for more info
smallkF is not supported because:
max(query.shape[-1] != value.shape[-1]) > 32
xFormers wasn't build with CUDA support
dtype=torch.float16 (supported: {torch.float32})
operator wasn't built - see python -m xformers.info for more info
unsupported embed per head: 64
I can't tell from this snippet what's going on - if you have a minimal reproducible notebook we can investigate but you'll almost surely want to discuss with the notebook author.
WARNING[XFORMERS]: xFormers can't load C++/CUDA extensions. xFormers was built for: PyTorch 2.3.0+cu121 with CUDA 1201 (you have 2.4.0+cu121) Python 3.10.14 (you have 3.10.12) Please reinstall xformers (see https://github.com/facebookresearch/xformers#installing-xformers) Memory-efficient attention, SwiGLU, sparse and more won't be available. Set XFORMERS_MORE_DETAILS=1 for more details Loading weights [fa892e66c0] from /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/4_sdxlNijiSpecial_sdxlNijiSE.safetensors Creating model from config: /content/gdrive/MyDrive/sd/stablediffusion/generative-models/configs/inference/sd_xl_base.yaml Running on public URL: https://d074e93d780b110106.gradio.live/ ✔ Connected Startup time: 32.2s (import torch: 19.7s, import gradio: 1.7s, setup paths: 1.8s, initialize shared: 0.2s, other imports: 1.5s, list SD models: 1.7s, load scripts: 1.0s, initialize extra networks: 0.2s, create ui: 1.5s, gradio launch: 1.9s, add APIs: 0.8s). Applying attention optimization: xformers... done. Model loaded in 21.8s (load weights from disk: 3.1s, create model: 1.9s, apply weights to model: 14.5s, move model to device: 0.1s, hijack: 0.4s, load textual inversion embeddings: 0.7s, calculate empty prompt: 0.8s). 0% 0/20 [00:00<?, ?it/s] Error completing request Arguments: ('task(z4p319i8avkc29w)', <gradio.routes.Request object at 0x79bc4bd3ce50>, '1 girl', '', [], 1, 1, 7, 512, 512, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', 'Use same scheduler', '', '', [], 0, 20, 'DPM++ 2M', 'Automatic', False, '', 0.8, -1, False, -1, 0, 0, 0, False, False, 'positive', 'comma', 0, False, False, 'start', '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, False, False, False, 0, False) {} Traceback (most recent call last): File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 74, in f res = list(func(*args, kwargs)) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 53, in f res = func(*args, *kwargs) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 37, in f res = func(args, kwargs) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/txt2img.py", line 109, in txt2img processed = processing.process_images(p) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 847, in process_images res = process_images_inner(p) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 988, in process_images_inner samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/processing.py", line 1346, in sample samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 230, in sample samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, extra_params_kwargs)) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_common.py", line 272, in launch_sampling return func() File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_kdiffusion.py", line 230, in
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, extra_params_kwargs))
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/sampling.py", line 594, in sample_dpmpp_2m
denoised = model(x, sigmas[i] * s_in, *extra_args)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_samplers_cfg_denoiser.py", line 249, in forward
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, *kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(args, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/external.py", line 112, in forward
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion/external.py", line 138, in get_eps
return self.inner_model.apply_model(*args, *kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_models_xl.py", line 43, in apply_model
return self.model(x, t, cond)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_utils.py", line 22, in
setattr(resolved_obj, func_path[-1], lambda *args, *kwargs: self(args, kwargs))
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_utils.py", line 34, in call
return self.sub_func(self.orig_func, args, kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_unet.py", line 50, in apply_model
result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/diffusionmodules/wrappers.py", line 28, in forward
return self.diffusion_model(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, *kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_unet.py", line 91, in UNetModel_forward
return original_forward(self, x, timesteps, context, args, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/diffusionmodules/openaimodel.py", line 993, in forward
h = module(h, emb, context)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, *kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/diffusionmodules/openaimodel.py", line 100, in forward
x = layer(x, context)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/attention.py", line 627, in forward
x = block(x, context=context[i])
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, *kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(args, kwargs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/attention.py", line 459, in forward
return checkpoint(
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/diffusionmodules/util.py", line 167, in checkpoint
return func(inputs)
File "/content/gdrive/MyDrive/sd/stablediffusion/generative-models/sgm/modules/attention.py", line 467, in _forward
self.attn1(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, *kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(args, **kwargs)
File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_hijack_optimizations.py", line 497, in xformers_attention_forward
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))
File "/usr/local/lib/python3.10/dist-packages/xformers/ops/fmha/init__.py", line 268, in memory_efficient_attention
return _memory_efficient_attention(
File "/usr/local/lib/python3.10/dist-packages/xformers/ops/fmha/init__.py", line 387, in _memory_efficient_attention
return _memory_efficient_attention_forward(
File "/usr/local/lib/python3.10/dist-packages/xformers/ops/fmha/init.py", line 403, in _memory_efficient_attention_forward
op = _dispatch_fw(inp, False)
File "/usr/local/lib/python3.10/dist-packages/xformers/ops/fmha/dispatch.py", line 125, in _dispatch_fw
return _run_priority_list(
File "/usr/local/lib/python3.10/dist-packages/xformers/ops/fmha/dispatch.py", line 65, in _run_priority_list
raise NotImplementedError(msg)
NotImplementedError: No operator found for
memory_efficient_attention_forward
with inputs: query : shape=(2, 1024, 10, 64) (torch.float16) key : shape=(2, 1024, 10, 64) (torch.float16) value : shape=(2, 1024, 10, 64) (torch.float16) attn_bias : <class 'NoneType'> p : 0.0decoderF
is not supported because: xFormers wasn't build with CUDA support attn_bias type is <class 'NoneType'> operator wasn't built - seepython -m xformers.info
for more infoflshattF@0.0.0
is not supported because: xFormers wasn't build with CUDA support requires device with capability > (8, 0) but your GPU has capability (7, 5) (too old)cutlassF
is not supported because: xFormers wasn't build with CUDA support operator wasn't built - seepython -m xformers.info
for more infosmallkF
is not supported because: max(query.shape[-1] != value.shape[-1]) > 32 xFormers wasn't build with CUDA support dtype=torch.float16 (supported: {torch.float32}) operator wasn't built - seepython -m xformers.info
for more info unsupported embed per head: 64