grandyang / leetcode

Provide all my solutions and explanations in Chinese for all the Leetcode coding problems.
6.16k stars 737 forks source link

[LeetCode] 386. Lexicographical Numbers #386

Open grandyang opened 5 years ago

grandyang commented 5 years ago

 

Given an integer n , return 1 - n in lexicographical order.

For example, given 13, return: [1,10,11,12,13,2,3,4,5,6,7,8,9].

Please optimize your algorithm to use less time and space. The input size may be as large as 5,000,000.

 

这道题给了我们一个整数n,让我们把区间[1,n]的所有数字按照字典顺序来排列,题目中也给了我们字典顺序的例子。那么我们需要重新排序,我最开始想到的方法是重写sort方法的comparator,思路是把所有数字都转为字符串,然后两个字符串按位相比,然后排好序后再转回数字,这种方法通过不了OJ的大集合,说明本题不是想考我们这种方法。我在论坛里看到大家普遍使用的是下面这种方法,学习了一下,感觉思路十分巧妙,估计我自己肯定想不出来。这种思路是按个位数遍历,在遍历下一个个位数之前,先遍历十位数,十位数的高位为之前的个位数,只要这个多位数并没有超过n,就可以一直往后遍历,如果超过了,我们除以10,然后再加1,如果加1后末尾形成了很多0,那么我们要用个while循环把0都去掉,然后继续运算,参见代码如下:

 

解法一:

class Solution {
public:
    vector<int> lexicalOrder(int n) {
        vector<int> res(n);
        int cur = 1;
        for (int i = 0; i < n; ++i) {
            res[i] = cur;
            if (cur * 10 <= n) {
                cur *= 10;
            } else {
                if (cur >= n) cur /= 10;
                cur += 1;
                while (cur % 10 == 0) cur /= 10;
            }
        }
        return res;
    }
};

 

下面这种方法是上面解法的递归形式,思路并没有什么不同,参见代码如下:

 

解法二:

class Solution {
public:
    vector<int> lexicalOrder(int n) {
        vector<int> res;
        for (int i = 1; i <= 9; ++i) {
            helper(i, n, res);
        }
        return res;
    }
    void helper(int cur, int n, vector<int>& res) {
        if (cur > n) return;
        res.push_back(cur);
        for (int i = 0; i <= 9; ++i) {
            if (cur * 10 + i <= n) {
                helper(cur * 10 + i, n, res);
            } else break;
        }
    }
};

 

参考资料:

https://discuss.leetcode.com/topic/55131/ac-240ms-c-solution

https://discuss.leetcode.com/topic/55091/java-recursion-backtracking-with-explanation

 

LeetCode All in One 题目讲解汇总(持续更新中...)

lld2006 commented 4 years ago

解法1中 在else里面是不可能大于n的, 判断等于就可以了,