Artificial neural networks (ANN) are computing architectures with massively parallel interconnections of simple neurons and has been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In over 10 TCGA RNA-Seq data sets, Cox-nnet achieves a statistically significant increase in predictive accuracy, compared to the other three methods including Cox-proportional hazards (Cox-PH), Random Forests Survival and CoxBoost. Cox-nnet also offers richer biological information, from both pathway and gene levels. The outputs from the hidden layer node can be utilized as a new approach for survival-sensitive dimension reduction. In summary, we have developed a new method for more accurate and efficient prognosis prediction, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.
Thanks for posting this! I wouldn't necessarily say this fits under deep learning, since I used a single hidden layer. I didn't observe any performance increase in using multiple fully connected hidden layers.
http://doi.org/10.1101/093021
By @traversc