grimoire / mmdetection-to-tensorrt

convert mmdetection model to tensorrt, support fp16, int8, batch input, dynamic shape etc.
Apache License 2.0
590 stars 85 forks source link

inference score become low #99

Open Chen-cyw opened 2 years ago

Chen-cyw commented 2 years ago

In some classes(not all) ,the scores of infrerence results become low(eg from 0.8 to 0.25) after transform to tensorrt model, test by the same object in the same picture. the mmdetection model config like this:

model = dict( type='CascadeRCNN', backbone=dict( type='ResNeXt', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch',

init_cfg=dict(

    #    type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d'),
    groups=32,
    base_width=4,
    dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
    stage_with_dcn=(False, True, True, True)),
neck=dict(
    type='FPN',
    in_channels=[256, 512, 1024, 2048],
    out_channels=256,
    num_outs=5),
rpn_head=dict(
    type='RPNHead',
    in_channels=256,
    feat_channels=256,
    anchor_generator=dict(
        type='AnchorGenerator',
        scales=[8],
        ratios=[0.5, 1.0, 2.0],
        strides=[4, 8, 16, 32, 64]),
    bbox_coder=dict(
        type='DeltaXYWHBBoxCoder',
        target_means=[0.0, 0.0, 0.0, 0.0],
        target_stds=[1.0, 1.0, 1.0, 1.0]),
    loss_cls=dict(
        type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
    loss_bbox=dict(
        type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=1.0)),
roi_head=dict(
    type='CascadeRoIHead',
    num_stages=3,
    stage_loss_weights=[1, 0.5, 0.25],
    bbox_roi_extractor=dict(
        type='SingleRoIExtractor',
        roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
        out_channels=256,
        featmap_strides=[4, 8, 16, 32]),
    bbox_head=[
        dict(
            type='Shared2FCBBoxHead',
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=11,
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0.0, 0.0, 0.0, 0.0],
                target_stds=[0.1, 0.1, 0.2, 0.2]),
            reg_class_agnostic=True,
            loss_cls=dict(
                type='CrossEntropyLoss',
                use_sigmoid=False,
                loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                           loss_weight=1.0)),
        dict(
            type='Shared2FCBBoxHead',
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=11,
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0.0, 0.0, 0.0, 0.0],
                target_stds=[0.05, 0.05, 0.1, 0.1]),
            reg_class_agnostic=True,
            loss_cls=dict(
                type='CrossEntropyLoss',
                use_sigmoid=False,
                loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                           loss_weight=1.0)),
        dict(
            type='Shared2FCBBoxHead',
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=11,
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0.0, 0.0, 0.0, 0.0],
                target_stds=[0.033, 0.033, 0.067, 0.067]),
            reg_class_agnostic=True,
            loss_cls=dict(
                type='CrossEntropyLoss',
                use_sigmoid=False,
                loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
    ],
    mask_roi_extractor=dict(
        type='SingleRoIExtractor',
        roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
        out_channels=256,
        featmap_strides=[4, 8, 16, 32]),
    mask_head=dict(
        type='FCNMaskHead',
        num_convs=4,
        in_channels=256,
        conv_out_channels=256,
        num_classes=11,
        loss_mask=dict(
            type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
train_cfg=dict(
    rpn=dict(
        assigner=dict(
            type='MaxIoUAssigner',
            pos_iou_thr=0.7,
            neg_iou_thr=0.3,
            min_pos_iou=0.3,
            match_low_quality=True,
            ignore_iof_thr=-1),
        sampler=dict(
            type='RandomSampler',
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
            add_gt_as_proposals=False),
        allowed_border=0,
        pos_weight=-1,
        debug=False),
    rpn_proposal=dict(
        nms_pre=2000,
        max_per_img=2000,
        nms=dict(type='nms', iou_threshold=0.7),
        min_bbox_size=0),
    rcnn=[
        dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.5,
                neg_iou_thr=0.5,
                min_pos_iou=0.5,
                match_low_quality=False,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            mask_size=28,
            pos_weight=-1,
            debug=False),
        dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.6,
                neg_iou_thr=0.6,
                min_pos_iou=0.6,
                match_low_quality=False,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            mask_size=28,
            pos_weight=-1,
            debug=False),
        dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.7,
                neg_iou_thr=0.7,
                min_pos_iou=0.7,
                match_low_quality=False,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            mask_size=28,
            pos_weight=-1,
            debug=False)
    ]),
test_cfg=dict(
    rpn=dict(
        nms_pre=1000,
        max_per_img=1000,
        nms=dict(type='nms', iou_threshold=0.7),
        min_bbox_size=0),
    rcnn=dict(
        score_thr=0.3,
        nms=dict(type='nms', iou_threshold=0.7),
        max_per_img=100,
        mask_thr_binary=0.3)))

dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type='CocoDataset', classes=classes, ann_file='data/coco/annotations/instances_train2017.json', img_prefix='data/coco/train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']) ]), val=dict( type='CocoDataset', classes=classes, ann_file='data/coco/annotations/instances_val2017.json', img_prefix='data/coco/val2017/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ]), test=dict( type='CocoDataset', classes=classes, ann_file='/triondata/cjfc/cjfc_data/test.json', img_prefix='/triondata/cjfc/cjfc_data/test/test/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ])) evaluation = dict(metric=['bbox', 'segm']) optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 11]) runner = dict(type='EpochBasedRunner', max_epochs=12) checkpoint_config = dict(interval=1) log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')]) custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] work_dir = '/triondata/cjfc/' gpu_ids = range(0, 1)