Closed HeJunhong1107 closed 1 year ago
Hi,
Thank you for your interest in this work! Sure, I will clean up the binding affinity prediction related code and model checkpoints in the next few weeks. I will get back to you as soon as I'm done. Sorry for the long wait.
Hello, thank you for your work! Is there any update regarding the same? It would be of great help.
Hi, sorry for the late response. I have updated the binding affinity prediction code just now. You can check Binding Affinity Prediction -- Inference part to predict affinity via a complex structure.
Hi. Thanks, but I am facing this issue when I run the inference model:
RuntimeError: Error(s) in loading state_dict for PropPredNet:
size mismatch for ligand_atom_emb.weight: copying a param with shape torch.Size([256, 30]) from checkpoint, the shape in current model is torch.Size([256, 31]).
Any idea how to resolve this?
It should be the rdkit version problem. In the expected rdkit version (2022.03), there are 8 hybridization types in total:
names = { 'OTHER': 7, 'S': 1, 'SP': 2, 'SP2': 3, 'SP3': 4, 'SP3D': 5, 'SP3D2': 6, 'UNSPECIFIED': 0, }
, but in the newer rdkit (like 2022.09), there is one more 'SP2D' type, which increases the number of atom features by 1.
To solve this problem, you can either reinstall the rdkit with the older version or remap the hybridization types by absorbing 'SP2D' into 'SP2'.
Thanks! Downgrading rdkit fixed the issue!
Hi @guanjq , I am not able to replicate the results by re-training the EGNN model . However While using the pre-trained model I am able to replicate the results of RMSE: 1.316, MAE: 1.031, R^2 score: 0.633, Pearson: 0.797, Spearman: 0.782, mean/std: 6.412/1.621
.
I tried to keep the all the hyper-parameters and datasets(/data/pdbbind_v2016/pocket_10_refined
) by referring to the config found in the checkpoint shared and followed the readme to prepare the pockets and splits
My current results on the test set shared are
RMSE: 3.082, MAE: 2.412, R^2 score: -1.014, Pearson: 0.513, Spearman: 0.562, mean/std: 7.769/3.195
Any Idea what might me going wrong in re-training?
thanks for the share of this amazing work, and I wanna know that is there a way to predict the affinity via a complex structure?