Open guibo-tech opened 1 year ago
expname = oral1v2_training_5 datadir = ../oral1v5_endonerf/
Training capacity: 5% based on original version, training parameters reduced to train it faster --N_iter = 1000 depth_refine_period=4000 i_print = 2 i_testset = 500 i_weights = 40 i_video = 1000 video_fps = 2
Training: 10min export CUDA_VISIBLE_DEVICES=0 python3 run_endonerf.py --config configs/oral1.txt --no_mask_raycast
Reconstruction: 5min python3 endo_pc_reconstruction.py --config_file configs/oral1.txt --n_frames 34 --depth_smoother --depth_smoother_d 28
Visualization python3 vis_pc.py --pc_dir logs/oral1v2_training_5/reconstructed_pcds_1000
expname = oral1v2_training_6 datadir = ../oral1v5_endonerf/
Training capacity: 10% based on original version, training parameters reduced to train it faster --N_iter = 10000 depth_refine_period=4000 i_print = 20 i_testset = 5000 i_weights = 400 i_video = 10000 video_fps = 2
Training: 8min export CUDA_VISIBLE_DEVICES=0 python3 run_endonerf.py --config configs/oral1.txt --no_mask_raycast
ERROR
solution: --no_depth_refine
expname = oral1v2_training_6 datadir = ../oral1v5_endonerf/
Training capacity: 10% based on original version, training parameters reduced to train it faster --N_iter = 1000 depth_refine_period=40 i_print = 2 i_testset = 500 i_weights = 40 i_video = 1000 video_fps = 2
Training: 8min export CUDA_VISIBLE_DEVICES=0 python3 run_endonerf.py --config configs/oral1.txt --no_mask_raycast --no_depth_refine
Reconstruction: 4min python3 endo_pc_reconstruction.py --config_file configs/oral1.txt --n_frames 34 --depth_smoother --depth_smoother_d 28
Visualization python3 vis_pc.py --pc_dir logs/oral1v2_training_6/reconstructed_pcds_1000
expname = oral1v2_training_7 datadir = ../oral1v6_endonerf/
Training capacity: 10% based on original version, training parameters reduced to train it faster
--N_iter = 10000 depth_refine_period=40000 i_print = 20 i_testset = 5000 i_weights = 400 i_video = 10000 video_fps = 2
Training: 15min export CUDA_VISIBLE_DEVICES=0 python3 run_endonerf.py --config configs/oral1.txt --no_mask_raycast
Reconstruction: 5min python3 endo_pc_reconstruction.py --config_file configs/oral1.txt --n_frames 34 --depth_smoother --depth_smoother_d 28
Visualization python3 vis_pc.py --pc_dir logs/oral1v2_training_7/reconstructed_pcds_10000
expname = oral1v2_training_9 datadir = ../oral1v6_endonerf/
-N_iter = 100000 depth_refine_period=400000 i_print = 200 i_testset = 50000 i_weights = 4000 i_video = 100000 video_fps = 2
Training: 1h30 export CUDA_VISIBLE_DEVICES=0 python3 run_endonerf.py --config configs/oral1.txt --no_mask_raycast
Reconstruction: min python3 endo_pc_reconstruction.py --config_file configs/oral1.txt --n_frames 34 --depth_smoother --depth_smoother_d 28
Visualization python3 vis_pc.py --pc_dir logs/oral1v2_training_9/reconstructed_pcds_100000
Bad result, it generates something good for the firts frame, but all the other frames are completely black.
The 3D reconstruction shows a quite small thing in the middle.
expname = oral1v2_training_10 datadir = ../oral1v6_endonerf/
Training capacity: 10% based on original version, training parameters reduced to train it faster
-N_iter = 100000 depth_refine_period=400000 i_print = 200 i_testset = 50000 i_weights = 4000 i_video = 100000 video_fps = 2
Training: 1h15 export CUDA_VISIBLE_DEVICES=0 python3 run_endonerf.py --config configs/oral1.txt --no_mask_raycast --no_depth_refine
Reconstruction: 4min python3 endo_pc_reconstruction.py --config_file configs/oral1.txt --n_frames 34 --depth_smoother --depth_smoother_d 28
Visualization python3 vis_pc.py --pc_dir logs/oral1v2_training_10/reconstructed_pcds_100000
expname = oral1v2_training_11 datadir = ../oral1v6_endonerf/
Training capacity: 30% based on original version, training parameters reduced to train it faster
Training: 3h30 export CUDA_VISIBLE_DEVICES=0 python3 run_endonerf.py --config configs/oral1.txt --no_mask_raycast --no_depth_refine
Reconstruction: 6min python3 endo_pc_reconstruction.py --config_file configs/oral1.txt --n_frames 34 --depth_smoother --depth_smoother_d 28
Visualization python3 vis_pc.py --pc_dir logs/oral1v2_training_11/reconstructed_pcds_100000 --vis_stall 40 --save_dir logs/oral1v2_training_11/ --rec_video_fps 2
Improvements
oral1v2_training_1
Training: 20min export CUDA_VISIBLE_DEVICES=0 # Specify GPU id python3 run_endonerf.py --config configs/oral1v2.txt
Reconstruction: 20min python3 endo_pc_reconstruction.py --config_file configs/oral1v2.txt --n_frames 120 --depth_smoother --depth_smoother_d 28
Visualization python3 vis_pc.py --pc_dir logs/oral1v2_training_1/reconstructed_pcds_1000