Open johnziebro opened 2 years ago
Using code from the SA_TSP example at: https://github.com/guofei9987/scikit-opt/blob/master/examples/demo_sa_tsp.py I am receiving significantly sub-optimal results.
import numpy as np from sko.SA import SA_TSP from scipy import spatial import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter num_points = 20 points_coordinate = np.random.rand(num_points, 2) # using SA_TSP example code num_points = points_coordinate.shape[0] distance_matrix = spatial.distance.cdist(points_coordinate, points_coordinate, metric='euclidean') def cal_total_distance(routine): '''The objective function. input routine, return total distance. cal_total_distance(np.arange(num_points)) ''' num_points, = routine.shape return sum([distance_matrix[routine[i % num_points], routine[(i + 1) % num_points]] for i in range(num_points)]) sa_tsp = SA_TSP(func=cal_total_distance, x0=range(num_points), T_max=100, T_min=1, L=10 * num_points) best_points, best_distance = sa_tsp.run() # Plot both solutions fig, ax = plt.subplots(1, 2) best_points_ = np.concatenate([best_points, [best_points[0]]]) best_points_coordinate = points_coordinate[best_points_, :] ax[0].plot(sa_tsp.best_y_history) ax[0].set_xlabel("Iteration") ax[0].set_ylabel("Distance") ax[0].set_title('Optimization') ax[1].plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], marker='o', markerfacecolor='b', color='c', linestyle='-') ax[1].xaxis.set_major_formatter(FormatStrFormatter('%.3f')) ax[1].yaxis.set_major_formatter(FormatStrFormatter('%.3f')) ax[1].set_xlabel("X") ax[1].set_ylabel("Y") ax[1].set_title('Coordinates') plt.show()
Possibly related to #160, however no code was supplied to compare.
scikit-opt shows as version 0.6.6, which is strange since 0.6.5 is the newest version.
import sko sko.__version__
0.6.6
Using code from the SA_TSP example at: https://github.com/guofei9987/scikit-opt/blob/master/examples/demo_sa_tsp.py I am receiving significantly sub-optimal results.