guoyao / graphrag-more

A modular graph-based Retrieval-Augmented Generation (RAG) system
https://microsoft.github.io/graphrag/
MIT License
33 stars 2 forks source link

[Bug]: <title> 跑的时候报错,请教一下这是啥问题🥺 #2

Closed yuaneg closed 1 month ago

yuaneg commented 1 month ago

Do you need to file an issue?

Describe the bug

16:44:21,980 graphrag.index.verbs.graph.clustering.cluster_graph WARNING Graph has no nodes 16:44:21,982 datashaper.workflow.workflow ERROR Error executing verb "cluster_graph" in create_base_entity_graph: Columns must be same length as key Traceback (most recent call last): File "/root/graphrag-more/envv/lib/python3.12/site-packages/datashaper/workflow/workflow.py", line 410, in _execute_verb result = node.verb.func(**verb_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/graphrag-more/graphrag/index/verbs/graph/clustering/cluster_graph.py", line 106, in cluster_graph output_df[[level_to, to]] = pd.DataFrame(


  File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/frame.py", line 4299, in __setitem__
    self._setitem_array(key, value)
  File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/frame.py", line 4341, in _setitem_array
    check_key_length(self.columns, key, value)
  File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/indexers/utils.py", line 390, in check_key_length
    raise ValueError("Columns must be same length as key")
ValueError: Columns must be same length as key
16:44:21,985 graphrag.index.reporting.file_workflow_callbacks INFO Error executing verb "cluster_graph" in create_base_entity_graph: Columns must be same length as key details=None
16:44:21,985 graphrag.index.run.run ERROR error running workflow create_base_entity_graph
Traceback (most recent call last):
  File "/root/graphrag-more/graphrag/index/run/run.py", line 227, in run_pipeline
    result = await _process_workflow(
             ^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/graphrag-more/graphrag/index/run/workflow.py", line 91, in _process_workflow
    result = await workflow.run(context, callbacks)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/graphrag-more/envv/lib/python3.12/site-packages/datashaper/workflow/workflow.py", line 369, in run
    timing = await self._execute_verb(node, context, callbacks)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/graphrag-more/envv/lib/python3.12/site-packages/datashaper/workflow/workflow.py", line 410, in _execute_verb
    result = node.verb.func(**verb_args)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/graphrag-more/graphrag/index/verbs/graph/clustering/cluster_graph.py", line 106, in cluster_graph
    output_df[[level_to, to]] = pd.DataFrame(
    ~~~~~~~~~^^^^^^^^^^^^^^^^
  File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/frame.py", line 4299, in __setitem__
    self._setitem_array(key, value)
  File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/frame.py", line 4341, in _setitem_array
    check_key_length(self.columns, key, value)
  File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/indexers/utils.py", line 390, in check_key_length
    raise ValueError("Columns must be same length as key")
ValueError: Columns must be same length as key
16:44:21,986 graphrag.index.reporting.file_workflow_callbacks INFO Error running pipeline! details=None
16:44:21,995 graphrag.index.cli ERROR Errors occurred during the pipeline run, see logs for more details.

### Steps to reproduce

_No response_

### Expected Behavior

_No response_

### GraphRAG Config Used

ncoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: tongyi.qwen-plus
  model_supports_json: false # recommended if this is available for your model, original default is true
  # max_tokens: 4000
  # request_timeout: 180.0
  # api_base: https://<instance>.openai.azure.com
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  # target: required # or all
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: tongyi.text-embedding-v2
    # api_base: https://<instance>.openai.azure.com
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional

chunks:
  size: 1200
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents

input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output" # output/${timestamp}/artifacts
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output" # output/${timestamp}/reports
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## strategy: fully override the entity extraction strategy.
  ##   type: one of graph_intelligence, graph_intelligence_json and nltk
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

### Logs and screenshots

_No response_

### Additional Information

- GraphRAG Version:
- Operating System:
- Python Version:
- Related Issues:
guoyao commented 1 month ago

@yuaneg 应该是调用tongyi模型的时候报错了,你有设置 TONGYI_API_KEY 环境变量么?设置了的话看看 output/logs.json 里面的报错,把报错信息贴出来看看。