[ ] I have searched the existing issues and this bug is not already filed.
[ ] My model is hosted on OpenAI or Azure. If not, please look at the "model providers" issue and don't file a new one here.
[ ] I believe this is a legitimate bug, not just a question. If this is a question, please use the Discussions area.
Describe the bug
16:44:21,980 graphrag.index.verbs.graph.clustering.cluster_graph WARNING Graph has no nodes
16:44:21,982 datashaper.workflow.workflow ERROR Error executing verb "cluster_graph" in create_base_entity_graph: Columns must be same length as key
Traceback (most recent call last):
File "/root/graphrag-more/envv/lib/python3.12/site-packages/datashaper/workflow/workflow.py", line 410, in _execute_verb
result = node.verb.func(**verb_args)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/graphrag-more/graphrag/index/verbs/graph/clustering/cluster_graph.py", line 106, in cluster_graph
output_df[[level_to, to]] = pd.DataFrame(
File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/frame.py", line 4299, in __setitem__
self._setitem_array(key, value)
File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/frame.py", line 4341, in _setitem_array
check_key_length(self.columns, key, value)
File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/indexers/utils.py", line 390, in check_key_length
raise ValueError("Columns must be same length as key")
ValueError: Columns must be same length as key
16:44:21,985 graphrag.index.reporting.file_workflow_callbacks INFO Error executing verb "cluster_graph" in create_base_entity_graph: Columns must be same length as key details=None
16:44:21,985 graphrag.index.run.run ERROR error running workflow create_base_entity_graph
Traceback (most recent call last):
File "/root/graphrag-more/graphrag/index/run/run.py", line 227, in run_pipeline
result = await _process_workflow(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/graphrag-more/graphrag/index/run/workflow.py", line 91, in _process_workflow
result = await workflow.run(context, callbacks)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/graphrag-more/envv/lib/python3.12/site-packages/datashaper/workflow/workflow.py", line 369, in run
timing = await self._execute_verb(node, context, callbacks)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/graphrag-more/envv/lib/python3.12/site-packages/datashaper/workflow/workflow.py", line 410, in _execute_verb
result = node.verb.func(**verb_args)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/graphrag-more/graphrag/index/verbs/graph/clustering/cluster_graph.py", line 106, in cluster_graph
output_df[[level_to, to]] = pd.DataFrame(
~~~~~~~~~^^^^^^^^^^^^^^^^
File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/frame.py", line 4299, in __setitem__
self._setitem_array(key, value)
File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/frame.py", line 4341, in _setitem_array
check_key_length(self.columns, key, value)
File "/root/graphrag-more/envv/lib/python3.12/site-packages/pandas/core/indexers/utils.py", line 390, in check_key_length
raise ValueError("Columns must be same length as key")
ValueError: Columns must be same length as key
16:44:21,986 graphrag.index.reporting.file_workflow_callbacks INFO Error running pipeline! details=None
16:44:21,995 graphrag.index.cli ERROR Errors occurred during the pipeline run, see logs for more details.
### Steps to reproduce
_No response_
### Expected Behavior
_No response_
### GraphRAG Config Used
ncoding_model: cl100k_base
skip_workflows: []
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_chat # or azure_openai_chat
model: tongyi.qwen-plus
model_supports_json: false # recommended if this is available for your model, original default is true
# max_tokens: 4000
# request_timeout: 180.0
# api_base: https://<instance>.openai.azure.com
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
# tokens_per_minute: 150_000 # set a leaky bucket throttle
# requests_per_minute: 10_000 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
# temperature: 0 # temperature for sampling
# top_p: 1 # top-p sampling
# n: 1 # Number of completions to generate
parallelization:
stagger: 0.3
# num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
## parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio
# target: required # or all
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_embedding # or azure_openai_embedding
model: tongyi.text-embedding-v2
# api_base: https://<instance>.openai.azure.com
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
# tokens_per_minute: 150_000 # set a leaky bucket throttle
# requests_per_minute: 10_000 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
# batch_size: 16 # the number of documents to send in a single request
# batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
# target: required # or optional
chunks:
size: 1200
overlap: 100
group_by_columns: [id] # by default, we don't allow chunks to cross documents
input:
type: file # or blob
file_type: text # or csv
base_dir: "input"
file_encoding: utf-8
file_pattern: ".*\\.txt$"
cache:
type: file # or blob
base_dir: "cache"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
storage:
type: file # or blob
base_dir: "output" # output/${timestamp}/artifacts
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
reporting:
type: file # or console, blob
base_dir: "output" # output/${timestamp}/reports
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
entity_extraction:
## strategy: fully override the entity extraction strategy.
## type: one of graph_intelligence, graph_intelligence_json and nltk
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/entity_extraction.txt"
entity_types: [organization,person,geo,event]
max_gleanings: 1
summarize_descriptions:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/summarize_descriptions.txt"
max_length: 500
claim_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
# enabled: true
prompt: "prompts/claim_extraction.txt"
description: "Any claims or facts that could be relevant to information discovery."
max_gleanings: 1
community_reports:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/community_report.txt"
max_length: 2000
max_input_length: 8000
cluster_graph:
max_cluster_size: 10
embed_graph:
enabled: false # if true, will generate node2vec embeddings for nodes
# num_walks: 10
# walk_length: 40
# window_size: 2
# iterations: 3
# random_seed: 597832
umap:
enabled: false # if true, will generate UMAP embeddings for nodes
snapshots:
graphml: false
raw_entities: false
top_level_nodes: false
local_search:
# text_unit_prop: 0.5
# community_prop: 0.1
# conversation_history_max_turns: 5
# top_k_mapped_entities: 10
# top_k_relationships: 10
# llm_temperature: 0 # temperature for sampling
# llm_top_p: 1 # top-p sampling
# llm_n: 1 # Number of completions to generate
# max_tokens: 12000
global_search:
# llm_temperature: 0 # temperature for sampling
# llm_top_p: 1 # top-p sampling
# llm_n: 1 # Number of completions to generate
# max_tokens: 12000
# data_max_tokens: 12000
# map_max_tokens: 1000
# reduce_max_tokens: 2000
# concurrency: 32
### Logs and screenshots
_No response_
### Additional Information
- GraphRAG Version:
- Operating System:
- Python Version:
- Related Issues:
Do you need to file an issue?
Describe the bug
16:44:21,980 graphrag.index.verbs.graph.clustering.cluster_graph WARNING Graph has no nodes 16:44:21,982 datashaper.workflow.workflow ERROR Error executing verb "cluster_graph" in create_base_entity_graph: Columns must be same length as key Traceback (most recent call last): File "/root/graphrag-more/envv/lib/python3.12/site-packages/datashaper/workflow/workflow.py", line 410, in _execute_verb result = node.verb.func(**verb_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/graphrag-more/graphrag/index/verbs/graph/clustering/cluster_graph.py", line 106, in cluster_graph output_df[[level_to, to]] = pd.DataFrame(