Execution mode YARN-client, YARN-cluster, standalone, local ..
Databricks
mtcars_tbl <- copy_to(sc, mtcars, overwrite = TRUE, name = "mtcars")
partitions <- mtcars_tbl %>%
filter(hp >= 100) %>%
mutate(cyl8 = cyl == 8) %>%
sdf_partition(training = 0.5, test = 0.5, seed = 1099)
training <- hc$asH2OFrame(partitions$training)
glm_model <- h2o.glm(x = c("wt", "cyl"),
y = "mpg",
training_frame = training,
lambda_search = TRUE)
# compute predicted values on our test dataset
pred <- h2o.predict(glm_model, newdata = test)
# convert from H2O Frame to Spark DataFrame
predicted <- hc$asSparkFrame(pred)
this causes:
Error : org.apache.spark.sql.AnalysisException: [TABLE_OR_VIEW_NOT_FOUND] The table or view `sparklyr_tmp_5b38ae32_5483_4b93_91b9_8cb313c6e1e2` cannot be found. Verify the spelling and correctness of the schema and catalog.
If you did not qualify the name with a schema, verify the current_schema() output, or qualify the name with the correct schema and catalog.
To tolerate the error on drop use DROP VIEW IF EXISTS or DROP TABLE IF EXISTS.; line 2 pos 5;
'Project [*]
+- 'Filter (0 = 1)
+- 'UnresolvedRelation [sparklyr_tmp_5b38ae32_5483_4b93_91b9_8cb313c6e1e2], [], false
at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.tableNotFound(package.scala:97)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis0$1(CheckAnalysis.scala:184)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis0$1$adapted(CheckAnalysis.scala:157)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:302)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$foreachUp$1(TreeNode.scala:301)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$foreachUp$1$adapted(TreeNode.scala:301)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:301)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$foreachUp$1(TreeNode.scala:301)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$foreachUp$1$adapted(TreeNode.scala:301)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:301)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis0(CheckAnalysis.scala:157)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis0$(CheckAnalysis.scala:154)
at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis0(Analyzer.scala:277)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis$1(CheckAnalysis.scala:150)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis(CheckAnalysis.scala:140)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis$(CheckAnalysis.scala:140)
at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:277)
at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:331)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:379)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:328)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:153)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:319)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$3(QueryExecution.scala:372)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:808)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:372)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1035)
at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:369)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:147)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:147)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:137)
at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:111)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1035)
at org.apache.spark.sql.SparkSession.$anonfun$withActiveAndFrameProfiler$1(SparkSession.scala:1042)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80)
at org.apache.spark.sql.SparkSession.withActiveAndFrameProfiler(SparkSession.scala:1042)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:109)
at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:845)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1035)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:822)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:871)
at sun.reflect.GeneratedMethodAccessor450.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at sparklyr.Invoke.invoke(invoke.scala:161)
at sparklyr.StreamHandler.handleMethodCall(stream.scala:141)
at sparklyr.StreamHandler.read(stream.scala:62)
at sparklyr.BackendHandler.$anonfun$channelRead0$1(handler.scala:60)
at scala.util.control.Breaks.breakable(Breaks.scala:42)
at sparklyr.BackendHandler.channelRead0(handler.scala:41)
at sparklyr.BackendHandler.channelRead0(handler.scala:14)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:99)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357)
at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:327)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:299)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357)
at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1410)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:919)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:166)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:722)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:658)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:584)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:496)
at io.netty.util.concurrent.SingleThreadEventExecutor$4.run(SingleThreadEventExecutor.java:986)
at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.jav
Error: org.apache.spark.sql.AnalysisException: [TABLE_OR_VIEW_NOT_FOUND] The table or view `sparklyr_tmp_5b38ae32_5483_4b93_91b9_8cb313c6e1e2` cannot be found. Verify the spelling and correctness of the schema and catalog.
Providing us with the observed and expected behavior definitely helps. Giving us with the following information definitively helps:
Sparkling Water/PySparkling/RSparkling version
ai.h2o:sparkling-water-package_2.12:3.40.0.1-1-3.3
Hadoop Version & Distribution
Databricks Machine Learning Runtime 12.2 LTS
Spark 3.3.2
Execution mode
YARN-client
,YARN-cluster
, standalone, local ..Databricks
this causes: