ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a physics-rich manipulation skill benchmark with large-scale demonstrations.
Hi, when I do sh scripts/train_rl_agent/run_SAC.sh, I get the following segfault:
sys.platform: linux
Python: 3.8.9 (default, Sep 20 2021, 15:30:32) [GCC 7.5.0]
CUDA available: True
GPU 0,1: NVIDIA GeForce RTX 2080 Ti
CUDA_HOME: /usr/local/cuda
NVCC: Build cuda_11.4.r11.4/compiler.30300941_0
Num of GPUs: 2
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
PyTorch: 1.8.0+cu111
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
- CuDNN 8.0.5
- Magma 2.5.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
TorchVision: 0.10.1+cu102
OpenCV: 4.5.3
mani_skill_learn: 1.0.0
OpenCabinetDrawerGripper_1000_link_0-v0 - INFO - 2021-10-06 22:56:48 - Set random seed to 0
INFO - 2021-10-06 22:56:48,738 - utils - Note: NumExpr detected 16 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
INFO - 2021-10-06 22:56:48,841 - utils - Note: NumExpr detected 16 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
INFO - 2021-10-06 22:56:48,858 - utils - Note: NumExpr detected 16 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
INFO - 2021-10-06 22:56:48,861 - utils - Note: NumExpr detected 16 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
INFO - 2021-10-06 22:56:49,019 - utils - Note: NumExpr detected 16 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
Segmentation fault (core dumped)
and pdb reveals the problem is from instantiating BatchRollout. However, when I changed the BatchRollout to Rollout and num_procs to 1, the segfault now comes from build_env in Rollout.
I have tried the solution suggested by a previous issue by running:
VK_ICD_FILENAMES=/usr/share/vulkan/icd.d/nvidia_icd.json
Hi, when I do
sh scripts/train_rl_agent/run_SAC.sh
, I get the following segfault:and pdb reveals the problem is from instantiating BatchRollout. However, when I changed the BatchRollout to Rollout and num_procs to 1, the segfault now comes from build_env in Rollout.
I have tried the solution suggested by a previous issue by running: VK_ICD_FILENAMES=/usr/share/vulkan/icd.d/nvidia_icd.json
Here is the content inside the json file:
but it did not work. Please advise. Thanks.