我在运行cli.py文件进行推理时,出现以下错误:
Traceback (most recent call last): File "/root/miniconda3/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/root/miniconda3/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/root/LLaVA/llava/serve/cli.py", line 137, in <module> main(args) File "/root/LLaVA/llava/serve/cli.py", line 106, in main output_ids = model.generate( File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/root/LLaVA/llava/model/language_model/llava_Taiyi.py", line 133, in generate return super().generate( File "/root/LLaVA/llava/model/language_model/Taiyi/modeling_qwen.py", line 1111, in generate return super().generate( File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/transformers/generation/utils.py", line 1330, in generate inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( File "/root/miniconda3/lib/python3.10/site-packages/transformers/generation/utils.py", line 402, in _prepare_model_inputs model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation( File "/root/miniconda3/lib/python3.10/site-packages/transformers/generation/utils.py", line 431, in _maybe_initialize_input_ids_for_generation raise ValueError("bos_token_idhas to be defined when noinput_idsare provided.") ValueError:bos_token_idhas to be defined when noinput_idsare provided.
但是input_ids打印出来长这个样子
cli.py文件内容为:
`import argparse
import torch
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer
def load_image(image_file):
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def main(args):
Model
disable_torch_init()
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
if "llama-2" in model_name.lower():
conv_mode = "llava_llama_2"
elif "mistral" in model_name.lower():
conv_mode = "mistral_instruct"
elif "v1.6-34b" in model_name.lower():
conv_mode = "chatml_direct"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
else:
args.conv_mode = conv_mode
conv = conv_templates[args.conv_mode].copy()
if "mpt" in model_name.lower():
roles = ('user', 'assistant')
else:
roles = conv.roles
image = load_image(args.image_file)
image_size = image.size
# Similar operation in model_worker.py
image_tensor = process_images([image], image_processor, model.config)
if type(image_tensor) is list:
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
else:
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
while True:
try:
inp = input(f"{roles[0]}: ")
except EOFError:
inp = ""
if not inp:
print("exit...")
break
print(f"{roles[1]}: ", end="")
if image is not None:
# first message
if model.config.mm_use_im_start_end:
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
else:
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
conv.append_message(conv.roles[0], inp)
image = None
else:
# later messages
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
print('prompt:', prompt)
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
print('input_ids:', input_ids)
print('input_ids.shape:', input_ids.shape)
print('input_ids.shape[1]:', input_ids.shape[1])
# bos_token_id = torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).to(model.device)
# eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long).to(model.device)
# user_input_ids = torch.concat([bos_token_id,input_ids, eos_token_id], dim=1).to(model.device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
print('stop_str:', stop_str)
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
image_sizes=[image_size],
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
max_new_tokens=args.max_new_tokens,
streamer=streamer,
stopping_criteria=[stopping_criteria])
outputs = tokenizer.decode(output_ids[0]).strip()
conv.messages[-1][-1] = outputs
# 如果启用了调试模式(args.debug为真),则打印出提示和生成的输出,方便调试和检查模型的行为。
if args.debug:
print("\n", {"prompt": prompt, "outputs": outputs}, "\n")
Question
我在运行cli.py文件进行推理时,出现以下错误:
Traceback (most recent call last): File "/root/miniconda3/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/root/miniconda3/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/root/LLaVA/llava/serve/cli.py", line 137, in <module> main(args) File "/root/LLaVA/llava/serve/cli.py", line 106, in main output_ids = model.generate( File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/root/LLaVA/llava/model/language_model/llava_Taiyi.py", line 133, in generate return super().generate( File "/root/LLaVA/llava/model/language_model/Taiyi/modeling_qwen.py", line 1111, in generate return super().generate( File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/transformers/generation/utils.py", line 1330, in generate inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( File "/root/miniconda3/lib/python3.10/site-packages/transformers/generation/utils.py", line 402, in _prepare_model_inputs model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation( File "/root/miniconda3/lib/python3.10/site-packages/transformers/generation/utils.py", line 431, in _maybe_initialize_input_ids_for_generation raise ValueError("
bos_token_idhas to be defined when no
input_idsare provided.") ValueError:
bos_token_idhas to be defined when no
input_idsare provided.
但是input_ids打印出来长这个样子
cli.py文件内容为: `import argparse import torch
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from llava.conversation import conv_templates, SeparatorStyle from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import requests from PIL import Image from io import BytesIO from transformers import TextStreamer
def load_image(image_file): if image_file.startswith('http://') or image_file.startswith('https://'): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert('RGB') else: image = Image.open(image_file).convert('RGB') return image
def main(args):
Model
if name == "main": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, default="facebook/opt-350m") parser.add_argument("--model-base", type=str, default=None) parser.add_argument("--image-file", type=str, required=True) parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--conv-mode", type=str, default=None) parser.add_argument("--temperature", type=float, default=0.2) parser.add_argument("--max-new-tokens", type=int, default=512) parser.add_argument("--load-8bit", action="store_true") parser.add_argument("--load-4bit", action="store_true") parser.add_argument("--debug", action="store_true") args = parser.parse_args() main(args) ` 请问各位大佬,为什么出现这个错误,感谢大佬的回复