haotian-liu / LLaVA

[NeurIPS'23 Oral] Visual Instruction Tuning (LLaVA) built towards GPT-4V level capabilities and beyond.
https://llava.hliu.cc
Apache License 2.0
20.36k stars 2.25k forks source link

[Question] How to save lora model with fine-tuning parameters? #1742

Open cjc20000323 opened 1 month ago

cjc20000323 commented 1 month ago

Question

After fine-tuning with lora, I get the files below. Are these files the training target or is there something wrong with my scripts? 微信截图_20241021170636 My script file is below:

!/bin/bash

deepspeed llava/train/train_mem.py \ --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \ --deepspeed ./scripts/zero3.json \ --model_name_or_path ./checkpoints/vicuna-v1-5-7b \ --version v1 \ --data_path ./playground/data/llava_v1_5_mix665k.json \ --image_folder ./playground/data \ --vision_tower ./checkpoints/clip-vit-large-patch14-336 \ --pretrain_mm_mlp_adapter ./checkpoints/llava-v1.5-7b-pretrain-local_32_2_4/mm_projector.bin \ --mm_projector_type mlp2x_gelu \ --mm_vision_select_layer -2 \ --mm_use_im_start_end False \ --mm_use_im_patch_token False \ --image_aspect_ratio pad \ --group_by_modality_length True \ --bf16 True \ --output_dir ./checkpoints/llava-v1.5-7b_32_4_2_16_4_2_lora \ --num_train_epochs 1 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 4 \ --gradient_accumulation_steps 2 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 50000 \ --save_total_limit 1 \ --learning_rate 2e-4 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --tf32 True \ --model_max_length 2048 \ --gradient_checkpointing True \ --dataloader_num_workers 4 \ --lazy_preprocess True