Open tischi opened 4 years ago
The three dim ones include H01 and G01; they are all below 100; the crowd starts at around 800 on the x-axis.
The bulk starts around 200 on the x-axis
The highlighted row is H01.
One thing would be to take N * mad
of the intensities measured in well H01 as a threshold.
Note: @constantinpape has a different method for measuring the intensities in well H01 that includes all pixels. That could also be used, however then we have be careful whether H01 contained virus or not. If there was virus, the mad could be higher, so we would exclude more images on such plates.
plate_name `median(background_IgG_mad, na.rm = T)`
<chr> <dbl>
1 plate8rep1_20200425_162127_242 90.6
2 plate9_2rep2_20200515_230124_149 88.0
3 plate9_3rep1_20200513_160853_327 102.
4 plateK12rep1_20200430_155932_313 89.1
5 plateK13rep1_20200430_175056_461 89.8
6 plateK14rep1_20200430_194338_941 104.
7 plateK15rep1_20200502_134503_016 112.
8 plateK16rep1_20200502_154211_240 83.9
9 plateK17rep1_20200505_115526_825 130.
10 plateK18rep1_20200505_134507_072 152.
11 PlateK19rep1_20200506_095722_264 94.3
12 PlateK20rep1_20200506_114059_490 155.
13 PlateK21rep1_20200506_132517_049 138.
14 plateK22rep1_20200509_094301_366 139.
15 plateK23rep1_20200512_103139_970 117.
16 plateK25rep1_20200512_123527_554 217.
17 plateK26rep1_20200515_221809_658 90.9
18 plateT1rep1_20200509_114423_754 72.2
19 plateT2rep1_20200509_190719_179 81.3
20 plateT3rep1_20200509_152617_891 101.
21 plateT4rep1_20200509_171215_610 85.0
22 plateT5rep1_20200512_143609_835 92.2
23 plateT6_20200513_105342_945 84.2
24 plateT7_20200513_131739_093 97.2
25 plateT8rep1_20200516_091304_432 105.
26 plateU10rep1_20200521_140753_720 78.9
27 plateU11rep1_20200521_154049_516 64.1
28 plateU13_T9rep1_20200516_105403_122 114.
29 plateU1rep1_20200519_102648_382 73.7
30 plateU2rep1_20200519_120202_377 75.1
31 plateU3rep1_20200519_134143_061 89.7
32 plateU4rep1_20200519_155958_647 70.4
33 plateU5rep1_20200519_173432_260 78.7
34 plateU6rep1_20200519_192153_222 128.
35 plateU7rep1_20200519_210009_665 67.9
36 plateU8rep1_20200519_223701_819 124.
37 plateU9rep1_20200520_215725_694 78.8
38 titration_plate_20200403_154849 61.6
plate_name `median(background_IgA_mad, na.rm = T)`
<chr> <dbl>
1 plate8rep1_20200425_162127_242 164.
2 plate9_2rep2_20200515_230124_149 131.
3 plate9_3rep1_20200513_160853_327 122.
4 plateK12rep1_20200430_155932_313 118.
5 plateK13rep1_20200430_175056_461 122.
6 plateK14rep1_20200430_194338_941 124.
7 plateK15rep1_20200502_134503_016 126.
8 plateK16rep1_20200502_154211_240 118.
9 plateK17rep1_20200505_115526_825 153.
10 plateK18rep1_20200505_134507_072 156.
11 PlateK19rep1_20200506_095722_264 143.
12 PlateK20rep1_20200506_114059_490 303.
13 PlateK21rep1_20200506_132517_049 128.
14 plateK22rep1_20200509_094301_366 145.
15 plateK23rep1_20200512_103139_970 122.
16 plateK25rep1_20200512_123527_554 125.
17 plateK26rep1_20200515_221809_658 147.
18 plateT1rep1_20200509_114423_754 116.
19 plateT2rep1_20200509_190719_179 121.
20 plateT3rep1_20200509_152617_891 132.
21 plateT4rep1_20200509_171215_610 119.
22 plateT5rep1_20200512_143609_835 111.
23 plateT6_20200513_105342_945 110.
24 plateT7_20200513_131739_093 131.
25 plateT8rep1_20200516_091304_432 119.
26 plateU10rep1_20200521_140753_720 113.
27 plateU11rep1_20200521_154049_516 119.
28 plateU13_T9rep1_20200516_105403_122 131.
29 plateU1rep1_20200519_102648_382 117.
30 plateU2rep1_20200519_120202_377 140.
31 plateU3rep1_20200519_134143_061 119.
32 plateU4rep1_20200519_155958_647 121.
33 plateU5rep1_20200519_173432_260 121.
34 plateU6rep1_20200519_192153_222 120.
35 plateU7rep1_20200519_210009_665 111.
36 plateU8rep1_20200519_223701_819 112.
37 plateU9rep1_20200520_215725_694 116.
38 titration_plate_20200403_154849 NA
5 plate1_IgM_20200527_125952_707 268.
7 plate2_IgM_20200527_155923_897 610.
9 plate5_IgM_20200528_094947_410 176.
11 plate6_IgM_20200528_111507_585 116.
14 plate8rep2_20200502_182438_996 268.
The plate plate2_IgM_20200527_155923_897
has a quite high value. Should I inspect in the PlateViewer?
@imagirom @constantinpape